федеральное государственное бюджетное образовательное учреждение высшего образования

«Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации

УТВЕРЖДАЮ по учебной работе ор Е.С. Богомолова

«31» авпуста 2020 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Название дисциплины: ФИЗИКА

Специальность: 33.05.01 ФАРМАЦИЯ

Квалификация: ПРОВИЗОР

Факультет: ФАРМАЦЕВТИЧЕСКИЙ

Кафедра: МЕДИПИНСКОЙ ФИЗИКИ И ИНФОРМАТИКИ

Форма обучения: ОЧНАЯ

Фонд оценочных средств предназначен для контроля знаний обучающихся по дисциплине ФИЗИКА (в соответствии с ФГОС ВО по специальности 33.05.01 Фармация, утвержденным приказом Министерства образования и науки Российской Федерации (Приказ № 1037 от 11.06.2016)). Текущий контроль осуществляется в течение всего срока освоения данной дисциплины. Промежуточная аттестация обучающихся проводится по итогам обучения и является обязательной.

Составители:

Иудин Д.И.- заведующий кафедрой медицинской физики и информатики, д.ф.-м.н., д.б.н., профессор;

Малиновская С.Л.- доктор биологических наук, доцент, профессор кафедры медицинской физики и информатики.

Рецензенты:

«28 августа» 2020 г.

А.С. Корягин - д.м.н., профессор, заведующий кафедрой биохимии и биотехнологии Института биологии и биомедицины Федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»;

Л.В. Ловцова. - д.м.н., профессор, заведующий кафедрой общей и клинической фармакологии ФГБОУ ВО «Приволжский исследовательский медицинский университет» Минздрава России.

Фонд оценочных средств и одобрен на заседании кафедры медицинской физики и информатики 19.08.2020 г. (протокол № 1)

Заведующий кафедрой медицинской физики информатики, д.фм.н., д.б.н., профессор	(подпись)	/ Иудин Д.И. /
СОГЛАСОВАНО Председатель цикловой методической коми по естественно - научным дисциплинам (протокол № 1 от «28 августа» 2020 г.) профессор, д.б.н., доцент «28 августа» 2020 г.	ссии <u>Гла Д</u> (подпись)	/Малиновская С.Л./
СОГЛАСОВАНО Заместитель начальника УМУ	(подписы)	/ Василькова А.С. /

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

ПО ДИСЦИПЛИНЕ «ФИЗИКА»

No	Контролируе	Код	Результаты обучения по дисциплине	Наимен	ювание
1 ,	мые разделы	контрол		оцено	чного
П/	(темы),	ируемой		сред	ства
П	модули	компете		вид	количество
	дисциплины	нции			
1.	Механика.	ОПК-1	Знать:	Тестовые	206
2.	Молекулярн ая физика, термодинам ика		 основные законы современной физики; теоретические основы физических методов анализа вещества; характеристики физических факторов и механизмы их действия на организм; метрологические требования при работе с физической аппаратурой; правила техники безопасности при работе с аппаратурой; 	задания Контрольные вопросы Комплект ситуацион ных задач	36 27
3.	Электричест		- новейшие достижения в области физики и перспективы их использования в различных областях фармации. Уметь:		
7.	во и	ОПК-1	- анализировать процессы жизнедеятель-		
	магнетизм		ности биосистем, используя законы физики; техникой работы на физических приборах, используемых для количественного и качественного анализа вещества; - обосновывать выбор физического фактора		
4.	Оптика		действующего на организм с диагностической и лечебной целью; - выбирать оптимальный метод количественного и качественного анализа вещества, используя соответствующие физические приборы и аппараты.		
5.	Квантовая		Владеть:		
	физика. Спектроско пия	ОПК-1	-методиками измерения физических величин; - методами колориметрии, поляриметрии, спектрофотометрии и рефрактометрии; - методологией абстрактного мышления для выполнения заключения о результатах измерений физических характеристик		
6.	Физика ионизирую щих излучений		биологических объектов и математической обработки полученных данных; - навыками практического использования приборов и аппаратуры при физическом анализе вещества; навыками получения информации из различных источников.		

2. ОЦЕНОЧНЫЕ СРЕДСТВА

(полный перечень оценочных средств)

2.1. Тестовые задания по дисциплине ФИЗИКА

Выберите один правильный ответ:

3.0
№ компетенции, на
формирование которой
направлено это
тестовое задание
ОПК-1
ОПК-1
ОПК-1
ОПК-1
ОПК-1

6. УКАЖИТЕ ФОРМУЛУ, ПО КОТОРОЙ МОЖНО	ОПК-1
РАССЧИТАТЬ РАВНОВЕСИЕ СИЛ НА РЫЧАГЕ, ГДЕ F_1 и F_2	
$-$ силы, действующие на рычаг, l_2 и l_1 – плечи этих сил	
1) $F_1/F_2 = l_1/l_2$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$4) F_1/F_2 = l_2 \cdot l_1$	
7. МОМЕНТ ИМПУЛЬСА - ЭТО	ОПК-1
1) вектор, приложенный в центре окружности,	
перпендикулярно ее плоскости и направленный в соответствии	
с направлением движения	
точки по правилу буравчика	
2) скаляр, приложенный в центре окружности,	
перпендикулярно ее плоскости и направленный в соответствии	
с направлением движения точки по правилу буравчика	
3) вектор, приложенный в центре окружности, параллельно ее	
плоскости и направленный в сторону, противоположную	
направлению движения точки по правилу буравчика	
4) вектор, приложенный в центре окружности,	
перпендикулярно ее плоскости и направленный в сторону,	
противоположную направления движения точки по правилу	
буравчика	
8. У РЫЧАГА ПЕРВОГО РОДА	ОПК-1
1) точка опоры находится сзади линий действия приложенных	
сил	
2) точка опоры находится между линиями действия	
приложенных сил	
3) число степеней свободы перемещения расположено по одну	
сторону от линий действия приложенных сил	
4) точка опоры расположена по одну сторону от линий	
действия приложенных сил	
9. У РЫЧАГА ВТОРОГО РОДА	ОПК-1
1) точка опоры находится сзади линий действия приложенных	
сил	
2) точка опоры находится между линиями действия	
приложенных сил	
3) число степеней свободы перемещения расположено по одну	
сторону от линий действия приложенных сил	
4) точка опоры расположена по одну сторону от линий	
действия приложенных сил	OTHA 4
10. УКАЖИТЕ ПРИМЕР РЫЧАГА ПЕРВОГО РОДА	ОПК-1
1) коромысло, железнодорожный шлагбаум, ножницы	
2) коромысло, гаечные ключи, ножницы	

3) гаечные ключи, щипцы для раскалывания орехов	
4) гаечные ключи, коромысло, ножницы	
11. УКАЖИТЕ ПРИМЕР РЫЧАГА ПЕРВОГО РОДА	ОПК-1
1) кости предплечья	_
2) свод стопы при подъеме на полупальцы	
3) череп, рассматриваемый в сагиттальной плоскости	
4) поперечно – полосатая мышца	
12. УКАЖИТЕ ПРИМЕР РЫЧАГА ВТОРОГО РОДА	ОПК-1
1) коромысло, железнодорожный шлагбаум, ножницы	
2) коромысло, гаечные ключи, ножницы	
3) гаечные ключи, щипцы для раскалывания орехов	
4) гаечные ключи, коромысло, ножницы	
13. УКАЖИТЕ ПРИМЕР РЫЧАГА ВТОРОГО РОДА	ОПК-1
1) кости предплечья	
2) икроножная мышца	
3) череп, рассматриваемый в сагиттальной плоскости	
4) поперечно – полосатая мышца	
14. УКАЖИТЕ ПРИМЕР РЫЧАГА ВТОРОГО РОДА	ОПК-1
1) икроножная мышца	
2) свод стопы при подъеме на полупальцы	
3) череп, рассматриваемый в сагиттальной плоскости	
4) поперечно – полосатая мышца	
15. УКАЖИТЕ ПРИМЕР РЫЧАГА СКОРОСТИ	ОПК-1
1) кости предплечья	
2) икроножная мышца	
3) череп, рассматриваемый в сагиттальной плоскости	
4) поперечно – полосатая мышца	
16. УКАЖИТЕ ПРИМЕР РЫЧАГА СИЛЫ	ОПК-1
1) кости предплечья	
2) свод стопы при подъеме на полупальцы	
3) череп, рассматриваемый в сагиттальной плоскости	
4) поперечно – полосатая мышца	
17. ОСНОВНОЙ МЕХАНИЧЕСКОЙ ХАРАКТЕРИСТИКОЙ	ОПК-1
СУСТАВА ЯВЛЯЕТСЯ	
1) число степеней свободы движения в вертикальном	
направлении	
2) число степеней свободы движения в горизонтальном	
направлении	
3) число степеней свободы нормального распределения	
4) число степеней свободы перемещения	
18. ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ ПЕРЕМЕЩЕНИЯ	ОПК-1
СУСТАВА ПОКАЗЫВАЕТ	
1) количество зависимых направлений, в которых могут	

взаимно	
перемещаться кости, образующие сочленения	
2) количество зависимых направлений, в которых могут	
взаимно перпендикулярно перемещаться кости, образующие	
сочленения	
3) количество независимых направлений, в которых могут	
взаимно перемещаться кости, образующие сочленения	
4) количество независимых направлений, в которых могут	
взаимно перемещаться кости, не образующие сочленения	
19. ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ СУСТАВА	ОПК-1
ОБУСЛОВЛЕНО, ГЛАВНЫМ ОБРАЗОМ,	
1) работой нескольких мышц, действующих по различным	
направлениям	
2) работой одной мышцы, действующей по двум	
направлениям	
3) физиологической назначением костей, соприкасающихся в	
суставе	
4) геометрической формой поверхности костей,	
соприкасающихся в суставе	
20. ВСТАВЬТЕ НЕДОСТАЮЩИЕ СЛОВА В ФРАЗУ «	ОПК-1
СВОБОДНОЕ ТВЕРДОЕ ТЕЛО ИМЕЕТ СТЕПЕНЕЙ	
СВОБОДЫ, ТАК КАК МОЖЕТ ПЕРЕМЕЩАТЬСЯ	
ПОСТУПАТЕЛЬНО ПО ВЗАИМНО ПЕРПЕНДИКУЛЬРНЫМ	
НАПРАВЛЕНИЯМ В ПРОСТРАНСТВЕ, А ТАКЖЕ ВРАЩАТЬСЯ	
ВОКРУГ НЕПОДВИЖНЫХ ОСЕЙ, ЭТИМ	
НАПРАВЛЕНИЯМ»	
1) пять, трем, трех, перпендикулярных	
2) семь, трем, двум, перпендикулярных	
3) шесть, трем, трех, параллельных	
4) девять, трем, двух, параллельных	0774.4
21. ВЫИГРЫШ В СИЛЕ, ПОЛУЧАЕМЫЙ С ПОМОЩЬЮ	ОПК-1
РЫЧАГА, ОПРЕДЕЛЯЕТСЯ	
1) отношением плеч приложенных сил	
2) работой мышц, действующей по различным направлениям	
3) число степеней свободы перемещения	
4) геометрической формой поверхности костей,	
соприкасающихся в суставе	OTHE 1
22. УКАЖИТЕ, ЧЕМУ РАВНА ВТОРАЯ СИЛА,	ОПК-1
ПРИЛОЖЕННАЯ К РЫЧАГУ, ЕСЛИ ЕЁ ПЛЕЧО РАВНО 2М,	
А ПЛЕЧО СИЛЫ 3Н РАВНО 2 М	
1) 1 H	
2) 2 H	
3) 3 H	

4) 4 H	
5) 5 H	
23. УКАЖИТЕ, ЧЕМУ РАВНА ВТОРАЯ СИЛА,	ОПК-1
ПРИЛОЖЕННАЯ К РЫЧАГУ, ЕСЛИ ЕЁ ПЛЕЧО РАВНО 1	
М, А ПЛЕЧО СИЛЫ 10 Н РАВНО 2М	
1) 1 H	
2) 2 H	
3) 3 H	
4) 4 H	
5) 5 H	
24. УКАЖИТЕ, ДЛИНУ БОЛЬШЕГО ПЛЕЧА РЫЧАГА, ЕСЛИ	ОПК-1
НА МЕНЬШЕЕ ПЛЕЧО, ДЛИНА КОТОРОГО 3 МЕТРА,	
ДЕЙСТВУЕТ СИЛА 50 Н, А НА БОЛЬШЕЕ ПЛЕЧО	
ДЕЙСТВУЕТ СИЛА 15 Н	
1) 5 M	
2) 10 M	
3) 15 M	
4) 20 m	
5) 25 M	
25. УКАЖИТЕ, ДЛИНУ БОЛЬШЕГО ПЛЕЧА РЫЧАГА, ЕСЛИ	ОПК-1
НА МЕНЬШЕЕ ПЛЕЧО, ДЛИНА КОТОРОГО 2 МЕТРА,	
ДЕЙСТВУЕТ СИЛА 100 Н, А НА БОЛЬШЕЕ ПЛЕЧО	
ДЕЙСТВУЕТ СИЛА 10 Н	
1) 5 M	
2) 10 m	
3) 15 M	
4) 20 m	
5) 25 M	
26.УПРУГОЙ НАЗЫВАЮТ ДЕФОРМАЦИЮ, КОТОРАЯ ПРИ	ОПК-1
СНЯТИИ МЕХАНИЧЕСКОГО НАПРЯЖЕНИЯ,	
ВЫЗЫВАЮЩЕГО ДЕФОРМАЦИЮ,	
1) полностью исчезает и тело восстанавливает свои объем и	
форму	
2) частично исчезает, но тело восстанавливает свой объем	
3) частично исчезает и тело восстанавливает свою длину	
4) частично исчезает и тело восстанавливает свою толщину	
27. ПЛАСТИЧЕСКОЙ НАЗЫВАЮТ ДЕФОРМАЦИЮ,	ОПК-1
КОТОРАЯ ПОСЛЕ СНЯТИЯ МЕХАНИЧЕСКОГО	
НАПРЯЖЕНИЯ, ВЫЗЫВАЮЩЕГО ЭТУ ДЕФОРМАЦИЮ,	
1) сохраняется полностью, или частично	
2) полностью исчезает и тело восстанавливает свои объем и	
форму 3) частично исчезает и тело восстанавливает свою ллину	
3) частично исчезает и тело восстанавливает свою длину	

4) частично исчезает и тело восстанавливает свой объем	
28. К ПЛАСТИЧНЫМ МАТЕРИАЛАМ ОТНОСЯТ	ОПК-1
1) нержавеющие стали, резина	<u> </u>
2) медь, золото, латунь	
3) вольфрам, кобальт, фарфор	
4) тантал, ртуть, цементы	
29. ХРУПКОСТЬ ПРОЯВЛЯЕТСЯ В	ОПК-1
1) разрушении тел при значительных деформациях	
2) сохранении телом объема при незначительных деформациях	
3) частичном сохранении объема при значительных	
деформациях	
4) разрушении тел при незначительных деформациях	
30. ВЫСОКОЭЛАСТИЧНЫЙ МАТЕРИАЛ	ОПК-1
ХАРАКТЕРИЗУЕТСЯ	
1) большим модулем упругости и малой деформацией	
2) неспособностью выдерживать большие нагрузки до разрыва	
3) малым модулем упругости и большой деформацией	
4) частичным сохранением объема телом при незначительных	
деформациях	
31. ОТНОСИТЕЛЬНАЯ ДЕФОРМАЦИЯ – ЭТО	ОПК-1
1) произведение изменения какого-либо размера тела, под	
действием механического напряжения, и первоначальной	
величины	
2) отношение изменения какого-либо размера тела, под	
действием механического напряжения, к первоначальной	
величине данного размера	
3) отношение изменения какого-либо размера тела, под	
действием механического напряжения, к модулю упругости	
4) отношение изменения какого-либо размера тела, под	
действием механического напряжения, к первоначальной	
площади	
32. ЗАКОН ГУКА ОПРЕДЕЛЯЕТ СЛЕДУЮЩИЙ ВИД	ОПК-1
ЗАВИСИМОСТИ МЕЖДУ НОРМАЛЬНЫМ НАПРЯЖЕНИЕМ	
И ОТНОСИТЕЛЬНОЙ ДЕФОРМАЦИЕЙ	
1) линейную	
2) логарифмическую	
3) экспоненциальную	
4) синусоидальную	OTT 1
33. УПРУГАЯ ОТНОСИТЕЛЬНАЯ ДЕФОРМАЦИЯ	ОПК-1
1) обратно пропорциональна нормальному напряжению при	
растяжении или сжатии	
2) прямо пропорциональна коэффициенту Стьюдента	
3) обратно пропорциональна коэффициенту Пуассона	
4) прямо пропорциональна нормальному напряжению при	
растяжении или сжатии	

24 TIDETET VIDVEOCTA OTO	ОПК-1
34. ПРЕДЕЛ УПРУГОСТИ – ЭТО	OHK-I
1) нормальное механическое напряжение, при котором	
деформация остаётся упругой	
2) нормальное механическое напряжение, при котором	
деформация перестаёт быть упругой	
3) нормальное механическое напряжение, при котором	
деформация перестаёт изменять продольный размер образца	
4) значительное напряжение, при котором деформация	
перестаёт изменять поперечный размер образца	
35. НОРМАЛЬНОЕ НАПРЯЖЕНИЕ – ЭТО ВЕЛИЧИНА,	ОПК-1
ЗАВИСЯЩАЯ ОТ ДЕФОРМИРУЮЩЕЙ СИЛЫ,	
ДЕЙСТВУЮЩЕЙ НА ЕДИНИЦУ ПЛОЩАДИ	
ПОПЕРЕЧНОГО СЕЧЕНИЯ ТЕЛА, В НАПРАВЛЕНИИ	
1) перпендикулярном этой площади	
2) параллельном этой площади	
3) под углом 45° к этой площади	
4) под углом 30° к этой площади	
36. УСТАЛОСТЬ МАТЕРИАЛА – ЭТО	ОПК-1
1) сопротивление материала при большом цикле нагрузок	
2) отсутствие разрушения и развития трещины	
3) разрушение путем постепенного формирования трещин и	
нарушения внутренней структуры материала	
4) разрушение при нагревании	
37. ИЗМЕНЕНИЕ ВО ВРЕМЕНИ ДЕФОРМАЦИЙ,	ОПК-1
ВОЗНИКАЮЩИХ В ОБРАЗЦЕ ПРИ ПОСТОЯННОЙ	OTIK 1
МЕХАНИЧЕСКОЙ НАГРУЗКЕ – ЭТО	
1) хрупкость,	
3) ползучесть	
4) прочность	OFFIC 1
38. ПРЕДЕЛ ПРОЧНОСТИ - ЭТО МЕХАНИЧЕСКОЕ	ОПК-1
НАПРЯЖЕНИЕ, ВЫШЕ КОТОРОГО	
1) образец теряет пластичность	
2) происходит разрушение нагруженного образца	
3) образец становится хрупким	
	ОПК-1
НАПРЯЖЕНИЕ, ВЫШЕ КОТОРОГО	
' · ·	
2) происходит разрушение нагруженного образца	
3) образец становится хрупким	
4) происходит переход упругой деформации в пластическую	
40. МЕРОЙ СОПРОТИВЛЕНИЯ ОБРАЗЦА ИЗМЕНЕНИЮ	ОПК-1
ЕГО ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ПРИ НОРМАЛЬНОМ	
МЕХАНИЧЕСКОМ НАПРЯЖЕНИИ ЯВЛЯЕТСЯ	
1) образец теряет пластичность 2) происходит разрушение нагруженного образца 3) образец становится хрупким 4) происходит переход упругой деформации в пластическую 40. МЕРОЙ СОПРОТИВЛЕНИЯ ОБРАЗЦА ИЗМЕНЕНИЮ ЕГО ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ПРИ НОРМАЛЬНОМ	ОПК-1 ОПК-1

1) модуль Юнга	
2) коэффициент Стьюдента	
3) коэффициент Пуассона	
4) коэффициент вязкости	
41. МЕРОЙ ИЗМЕНЕИЯ ПОПЕРЕЧНЫХ ГЕОМЕТРИЧЕСКИХ	ОПК-1
РАЗМЕРОВ ПРИ НОРМАЛЬНОМ МЕХАНИЧЕСКОМ	OTIK-1
НАПРЯЖЕНИИ ЯВЛЯЕТСЯ	
1) модуль Юнга	
2) коэффициент Стьюдента	
3) коэффициент Пуассона 4) коэффициент вязкости	
	ОПК-1
42. КОФФИЦИЕНТ ПУАССОНА АБСОЛЮТНО УПРУГОГО	OHK-1
ВЕЩЕСТВА (МЕХАНИЧЕСКИЕ СВОЙСТВА ВОДЫ БЛИЗКИ К ТАКИМ СВОЙСТВАМ)	
· · · · · · · · · · · · · · · · · · ·	
PABEH	
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ 0.5	
2) 0,5	
3) 1	
4) π 42 ΚΟΦΦΙΑΙΙΑΕΙΙΣ ΕΙΧΑ CCOLLA Α ΕΚΟΙΠΟΣΙΙΟ ΧΡΙΧΙΙΚΟΣΟ	OTHE 1
43. КОФФИЦИЕНТ ПУАССОНА АБСОЛЮТНО ХРУПКОГО	ОПК-1
ВЕЩЕСТВА	
PABEH	
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ 0.5	
2) 0,5	
3) 1	
4) π	OTH: 1
44. ПРЕДЕЛ ПРОЧНОСТИ ПРИ ДЛИТЕЛЬНОЙ НАГРУЗКЕ	ОПК-1
1) снижается	
2) повышается	
3) остаётся постоянными	
4) снижается, а затем возрастает	OFFIC 1
45. ЕСЛИ В СООБЩАЮЩИХСЯ СОСУДАХ НАХОДИТСЯ	ОПК-1
ОДНОРОДНАЯ ЖИДКОСТЬ, ТО ЕЕ СВОБОДНАЯ	
ПОВЕРХНОСТЬ ВО ВСЕХ СОСУДАХ РАСПОЛАГАЕТСЯ	
1) на разных уровнях, в зависимости от диаметра сосуда	
2) на одном уровне, не зависимо от диаметра сосуда	
3) на разных уровнях, не зависимо от диаметра сосуда	
4) на одном уровне, в зависимости от диаметра сосуда	OFFIC 1
46. СИЛА СТОКСА, ДЕЙСТВУЮЩАЯ НА ДВИГАЮЩЕЕСЯ	ОПК-1
В ВЯЗКОЙ СРЕДЕ ТЕЛО	
1) зависит от скорости движения	
2) не зависит от скорости движения	
3) зависит лишь от температуры среды	
4) зависит лишь от вязкости среды	

47. ВЛИЯНИЕ ВНУТРЕННЕГО ТРЕНИЯ НА ДВИЖЕНИЕ ГАЗА ПРИ НОМАЛЬНЫХ УСЛОВИЯХ ПОЛНЕЕ ХАРАКТЕРИЗУЕТ КОФФИЦИЕНТ ВЯЗКОСТИ 1) эффективный 2) динамический 3) относительный 4) кинематический	ОПК-1
48. СИЛЫ ВНУТРЕННЕГО ТРЕНИЯ НАПРАВЛЕНЫ 1) под углом 90° к поверхностям соприкасающихся слоев 2) вдоль поверхностей соприкасающихся слоев 3) под углом 30° к поверхностям соприкасающихся слоев 4) под углом 45° к поверхностям соприкасающихся слоев	ОПК-1
49. ИЗ УСЛОВИЯ НЕРАЗРЫВНОСТИ, СКОРОСТЬ ТОКА ЖИДКОСТИ ПРИ СУЖЕНИИ ТРУБКИ 1) остается постоянной 2) возрастает 3) убывает 4) растет квадратично	ОПК-1
50. ПРИ СУЖЕНИИ ТРУБКИ СТАТИЧЕСКОЕ ДАВЛЕНИЕ ЖИДКОСТИ 1) увеличивается 2) уменьшается 3) не изменяется 4) становится зависимым от упругих свойств стенки трубки	ОПК-1
51. ПРИ УВЕЛИЧЕНИИ ТЕМПЕРАТУРЫ СКОРОСТЬ ТЕПЛОВОГО ДВИЖЕНИЯ МОЛЕКУЛ 1) уменьшается 2) увеличивается 3) не изменяется 4) изменяется в зависимости от вязкости	ОПК-1
52. СКОРОСТЬ ТОКА КРОВИ В КАПИЛЛЯРАХ ПРИМЕРНО В 500 РАЗ МЕНЬШЕ СКОРОСТИ КРОВОТОКА В АОРТЕ, ПОСКОЛЬКУ 1) радиус капилляра много меньше радиуса аорты 2) суммарный радиус капилляров много больше радиуса аорты 3) радиус аорты равен суммарному радиусу капилляров и артериол 4) кровь является вязкой жидкостью	ОПК-1
53. ИЗВЕСТНО, ЧТО КРОВЬ ЯВЛЯЕТСЯ НЕНЬЮТОНОВСКОЙ ЖИДКОСТЬЮ. ЭТО ОБЪЯСНЯЕТСЯ ТЕМ, ЧТО 1) форменные элементы крови разнообразны по форме и размерам 2) форменные элементы крови двигаются хаотично 3) плазма крови обладает высокой вязкостью	ОПК-1

4) форменные элементы крови образуют агрегации	
54. ВЛАЖНОСТЬ - ЭТО МЕРА, ХАРАКТЕРИЗУЮЩАЯ	ОПК-1
1) отношение парциального и атмосферного давлений	
2) наличие выхлопных газов в воздухе	
3) наличие пыли в воздухе	
4) содержание водяных паров в воздухе	
5) содержание эмульгированных паров в воздухе	
55. В ТЕРМОДИНАМИЧЕСКОМ РАВНОВЕСИИ СО СВОЕЙ	ОПК-1
ЖИДКОСТЬЮ НАХОДИТСЯ	
1) кипящий растворитель	
2) насыщенный пар	
3) ненасыщенный пар	
4) охлаждающийся газ	
56. ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ВОЗДУХА	ОПК-1
НАХОДИТСЯ В ИНТЕРВАЛЕ	
1) $0\% \le \phi \le 100\%$	
2) $0 \le \varphi \le 100$	
$3) -100\% \le \varphi \le 0\%$	
$4) -100 \le \varphi \le 0$	
$ 5 -100\% \le \varphi \le 100\%$	
57. ВСТАВЬТЕ ПРОПУЩЕННЫЕ СЛОВА В ФРАЗУ	ОПК-1
«ОБЛАКА ОБРАЗУЮТСЯ ПРИ ВОДЯНОГО ПАРА В	OTIK 1
ВОЗДУХЕ»	
1) конвекции, поднимающемся	
2) конвекции, опускающемся	
3) конденсации, поднимающемся	
4) конденсации, опускающемся	
5) конденсации, покоящемся	
58. СОДЕРЖАНИЕ ВЛАГИ В ВОЗДУХЕ	ОПК-1
1) не зависит от абсолютной влажности водяного пара и	
зависит от температуры	
2) зависит от абсолютной влажности водяного пара и не	
зависит от температуры	
3) не зависит от парциального давления водяного пара и	
зависит от температуры	
4) не зависит от парциального давления водяного пара и не	
зависит от температуры	
5) зависит от парциального давления водяного пара и не	
зависит от температуры	
59. ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ	ОПК-1
1) не уменьшается при повышении температуры	
2) увеличивается при повышении температуры	
3) остается постоянной при повышении температуры	
4) уменьшается при понижении температуры	

5) уменьшается при повышении температуры	
60. ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ	ОПК-1
1) остается постоянной при понижении температуры	OTHE
2) увеличивается при повышении температуры	
3) не увеличивается при понижении температуры	
4) увеличивается при понижении температуры	
1 / -	
5) увеличивается при повышении температуры 61. ПРИ ПОНИЖЕНИИ ТЕМПЕРАТУРЫ ОТНОСИТЕЛЬНАЯ	ОПК-1
	OHK-1
ВЛАЖНОСТЬ ВОЗДУХА УВЕЛИЧИВАЕТСЯ, А МАССА	
ВОДЯНОГО ПАРА В ВОЗДУХЕ ПРИ ЭТОМ	
1) уменьшается	
2) увеличивается	
3) остается постоянной	
4) изменяется по синусоидальному закону	
5) уменьшается по экспоненциальному закону	OTHE 1
62. НИЗКАЯ ВЛАЖНОСТЬ ВОЗДУХА	ОПК-1
1) приводит к увлажнению материалов и образованию плесени	
2) не влияет на пересыхание или увлажнение материалов	
3) приводит к пересыханию материалов	
4) не приводит к пересыханию материалов	
5) приводит к пересыханию, а затем к переувлажнению	
материалов	
63. СОДЕРЖАНИЕ ВОДЯНОГО ПАРА В ВОЗДУХЕ	ОПК-1
ХАРАКТЕРИЗУЮТ ДАВЛЕНИЕМ, НАЗЫВАЕМЫМ	
1) порционным давлением водяного пара	
2) парциальным давлением энтальпии	
3) парциальным давлением изолированной системы	
4) парциальным давлением водяного пара	
5) конвекционным давлением водяного пара	
64. ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ВОЗДУХА	ОПК-1
ПОКАЗЫВАЕТ, СКОЛЬКО ВЛАГИ НЕ ХВАТАЕТ, ЧТОБЫ	
ПРИ ДАННЫХ УСЛОВИЯХ ОКРУЖАЮЩЕЙ СРЕДЫ	
1) началась конденсация	
2) закончилась конденсация	
3) началась конвекция	
4) закончилась конвекция	
5) началась энтропия	
65. ДЛЯ НЕНАСЫЩЕННОГО ПАРА СПРАВЕДЛИВО	ОПК-1
УРАВНЕНИЕ	
1) Гей Люссака	
2) Менделеева - Клайперона	
3) Ван-дер-Ваальса	
4) Бойля-Мариотта	
5) Шарля	
3) Ван-дер-Ваальса 4) Бойля-Мариотта	

66. НЕНАСЫЩЕННЫЙ ПАР МОЖЕТ БЫТЬ ПРЕВРАЩЕН В НАСЫЩЕННЫЙ В РЕЗУЛЬТАТЕ	ОПК-1
1) изобарного охлаждения	
2) изохорного охлаждения	
3) изотермического охлаждения	
4) адиабатического процесса	
5) изобарного нагревания	
67. ТЕМПЕРАТУРА, ПРИ КОТОРОЙ ПАР СТАНОВИТСЯ	ОПК-1
НАСЫЩАЮЩИМ В РЕЗУЛЬТАТЕ ИЗОХОРНОГО	
ОХЛАЖДЕНИЯ, НАЗЫВАЮТ	
1) абсолютным нулем	
2) температурой кипения	
3) точкой росы	
4) температурой плавления	
5) температурой парообразования	
68. ВОЗДУХ ВЛАЖНЫЙ И УДУШЛИВЫЙ, ЕСЛИ	ОПК-1
1) абсолютная влажность высокая	
2) абсолютная влажность низкая	
3) относительная влажность высокая	
4) относительная влажность низкая	
5) психрометрическая влажность низкая	
69. ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТЬЮ ВОЗДУХА	ОПК-1
НАЗЫВАЮТ	
1) отношение давления насыщенного водяного пара p_{θ} ,	
содержащегося в воздухе при данной температуре, к	
парциального давлению p при той же температуре, выраженной	
в процентах	
2) произведение давления насыщенного водяного пара p_0 ,	
содержащегося в воздухе при данной температуре и	
парциального давлению p при той же температуре, выраженной	
в процентах	
$ 3 \rangle$ отношение парциального давления p водяного пара,	
содержащегося в воздухе при данной температуре, к давлению	
p_{θ} насыщенного пара при той же температуре, выраженной в	
процентах	
$ 4 \rangle$ произведение парциального давления p водяного пара,	
содержащегося в воздухе при данной температуре и давления	
p_{θ} насыщенного пара при той же температуре, выраженной в	
процентах	
5) отношение парциального давления р водяного пара,	
содержащегося в воздухе при данной температуре, к давлению	
p_0 насыщенного пара при той же температуре, выраженной в	
ОТНОСИТЕ В ЦУГО В В А ЖИОСТЬ ИЗМЕРЯТОТ	ОПІ/ 1
70. ОТНОСИТЕЛЬНУЮ ВЛАЖНОСТЬ ИЗМЕРЯЮТ	ОПК-1
1) аспирационным вискозиметром	

2) аспирационным термометром	
3) аспирационным амперметром	
4) аспирационным генератором	
5) аспирационным психрометром	
71. ОТНОСИТЕЛЬНУЮ ВЛАЖНОСТЬ ИЗМЕРЯЮТ	ОПК-1
1) вискозиметрическим психрометром	OTIK-1
2) термическим психрометром	
3) аспирационным термометром	
4) психрометром Августа	
5) аспирационным вольтметром 72. ОТНОСИТЕЛЬНУЮ ВЛАЖНОСТЬ ИЗМЕРЯЮТ В	OFFIC 1
	ОПК-1
$(1) \text{ KF/M}^3$	
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	
$\begin{pmatrix} 3 \end{pmatrix} \Gamma / M^3$	
$(4) \text{ M}^3$	
5)%	0774
73. ДЛЯ ВЛАЖНОСТИ ВОЗДУХА ХАРАКТЕРНА	ОПК-1
ТЕМПЕРАТУРА, НАЗЫВАЕМАЯ	
1) точкой кипения	
2) точкой замерзания	
3) точкой росы	
4) точкой абсолютной влажности	
5) точкой относительной влажности	
74. ТОЧКА РОСЫ - ЭТО	ОПК-1
1) интенсивность испарения	
2) интенсивность насыщения воздуха водяным паром	
3) абсолютная влажность	
4) относительная влажность	
5) температура	
75. ТОЧКА РОСЫ – ЭТО ТЕМПЕРАТУРА,	ОПК-1
МАКСИМАЛЬНАЯ ВЛАЖНОСТЬ ПРИ КОТОРОЙ	
ЧИСЛЕННО РАВНЯЕТСЯ	
1) относительной влажности в данных условиях	
2) относительной влажности в горах	
3) абсолютной влажности в данных условиях	
4) относительная влажность в горах	
5) абсолютной влажности на уровне моря	
76. ТОЧКА РОСЫ – ЭТО ТЕМПЕРАТУРА, ПРИ КОТОРОЙ	ОПК-1
ПАР, СОДЕРЖАЩИЙСЯ В ВОЗДУХЕ ДОСТИГАЕТ	
СОСТОЯНИЯ	
1) относительного испарения	
2) оптимальной влажности	
3) интенсивного испарения	
4) ненасыщения	
5) насыщения	

ОПК-1
ОПК-1
OTHC 1
OFFIC 1
ОПК-1
ОПК-1
ОПК-1
O111X-1
OFFIC 1
ОПК-1
ОПК-1

ПОД КОТОРЫМ ПРЕДМЕТ ВИДЕН «НЕВООРУЖЕННЫМ»	
ГЛАЗОМ С РАССТОЯНИЯ НАИЛУЧШЕГО ЗРЕНИЯ	
НАЗЫВАЮТ	
1) линейным увеличением микроскопа	
2) апертурным увеличением микроскопа	
3) угловым увеличением микроскопа	
4) бесполезным увеличением микроскопа	
5) полезным увеличением микроскопа	
84. ПРЕДЕЛ РАЗРЕШЕНИЯ МИКРОСКОПА - ЭТО	ОПК-1
1) наименьшее расстояние между двумя точками предмета, при	
котором они наблюдаются раздельно	
2) наибольшее расстояние между двумя точками предмета, при	
котором они наблюдаются раздельно	
3) наименьшее расстояние между двумя точками предмета, при	
котором они сливаются	
4) наименьшее расстояние между двумя точками предмета, при	
котором они не видны	
5) наибольшее расстояние между двумя точками предмета, при	
котором они не видны	
85. ЕДИНИЦЕЙ ОПТИЧЕСКОЙ СИЛЫ ЛИНЗЫ ЯВЛЯЕТСЯ	ОПК-1
1) метр	
2) сантиметр	
3) фокусное расстояние	
4) диоптрия	
5) градус	
86. ОПТИЧЕСКАЯ СИЛА ЛИНЗЫ - ЭТО ВЕЛИЧИНА	ОПК-1
1) обратная ее фокусному расстоянию	OTAL 1
2) прямо пропорциональная ее фокусному расстоянию	
3) обратная полезному увеличению	
4) прямо пропорциональная полезному увеличению	
5) обратная ее главной оптической оси	
87. СОБИРАЮЩИЕ ЛИНЗЫ - ЭТО ЛИНЗЫ	ОПК-1
1) преобразующие пучок перпендикулярных лучей в	OTIK 1
сходящийся	
2) преобразующие пучок параллельных лучей в сходящийся	
3) преобразующие пучок параглельных лучей в еходящийся в	
расходящийся	
4) преобразующие пучок параллельных лучей в расходящийся	
5) преобразующие пучок сходящихся лучей в расходящийся	
88. РАССЕИВАЮЩИЕ (ОТРИЦАТЕЛЬНЫЕ) ЛИНЗЫ - ЭТО	ОПК-1
ЛИНЗЫ	OTIK-1
2) преобразующие пущок парадлени или пущей в суолящийся	
2) преобразующие пучок параллельных лучей в сходящийся	
3) преобразующие пучок перпендикулярных лучей в	

naaya rayyyyaa	
расходящийся	
4) преобразующие пучок параллельных лучей в расходящийся	
5) преобразующие пучок расходящихся лучей в сходящийся	
89. ТОЧКА, НА ГЛАВНОЙ ОПТИЧЕСКОЙ ОСИ, В	ОПК-1
КОТОРОЙ ПЕРЕСЕКАЮТСЯ ПОСЛЕ ПРЕЛОМЛЕНИЯ	
ЛУЧИ, ПАРАЛЛЕЛЬНЫЕ ЭТОЙ ОСИ, НАЗЫВАЕТСЯ	
1) главным фокусом	
2) побочным фокусом	
3) мнимым фокусом	
4) действительным фокусом	
· ·	
5) рассеивающим фокусом	OTHE 1
90. ФОКАЛЬНОЙ НАЗЫВАЕТСЯ ПЛОСКОСТЬ, КОТОРАЯ	ОПК-1
1) параллельна главной оптической оси линзы, а также	
проходящая через ее главный фокус	
2) параллельна главной оптической оси линзы, а также	
проходящая через ее побочный главный фокус	
3) перпендикулярна главной оптической оси линзы, а также	
проходящая через ее главный фокус	
4) перпендикулярна главной оптической оси линзы, а также	
проходящая через ее побочный фокус	
5) перпендикулярна главной оптической оси линзы, а также	
проходящая через ее мнимый фокус	
91. ПОБОЧНЫЙ ФОКУС - ЭТО	ОПК-1
1) точка на фокальной плоскости, в которой собираются лучи,	OTHE
падающие на линзу параллельно побочной оси	
2) точка на фокальной плоскости, в которой собираются лучи,	
падающие на линзу перпендикулярно побочной оси	
3) точка на главной оптической оси, в которой собираются	
лучи, падающие на линзу параллельно побочной оси	
4) точка на главной оптической оси, в которой собираются	
лучи, падающие на линзу перпендикулярно побочной оси	
5) точка на фокальной плоскости, в которой рассеиваются	
лучи, падающие на линзу перпендикулярно побочной оси	
92. МНИМЫМ НАЗЫВАЮТ ИЗОБРАЖЕНИЕ, ЕСЛИ ОНО	ОПК-1
ОБРАЗОВАНО	
1) самими лучами	
2) не самими лучами, а их продолжением	
3) лучами, ограничивающими центры сферических	
поверхностей линзы	
4) лучами, проходящими через главную плоскость	
поляризации	
5) лучами, проходящими через оптическую ось кристалла	
by my main, iipoxogaimini repes off in feeky to oeb kpherabia	

93. ДЕЙСТВИТЕЛЬНЫМ НАЗЫВАЮТ ИЗОБРАЖЕНИЕ,	ОПК-1
ЕСЛИ ОНО ОБРАЗОВАНО	
1) самими лучами	
2) не самими лучами, а их продолжением	
3) лучами, ограничивающими центры сферических	
поверхностей линзы	
4) лучами, проходящими через главную плоскость	
поляризации	
5) лучами, проходящими через оптическую ось кристалла	
94. ГЛАВНАЯ ОПТИЧЕСКАЯ ОСЬ ЛИНЗЫ – ЭТО	ОПК-1
1) гипербола, проходящая через центры сферических	
поверхностей, ограничивающих линзу	
2) парабола, проходящая через центры сферических	
поверхностей, ограничивающих линзу	
3) экспонента, проходящая через центры сферических	
поверхностей, ограничивающих линзу	
4) тангенсоида, проходящая через центры сферических	
поверхностей, ограничивающих линзу	
5) прямая линия, проходящая через центры сферических	
поверхностей, ограничивающих линзу	
95. ОПТИЧЕСКИЙ ЦЕНТР – ЭТО	ОПК-1
1) прямая, которая у двояковыпуклых или двояковогнутых, с	
одинаковыми радиусами поверхностей, линз находится на	
оптической оси внутри линзы	
2) отрезок, который у двояковыпуклых или вояковогнутых, с	
одинаковыми радиусами поверхностей линз, находится на	
оптической оси внутри линзы	
3) окружность, которая у двояковыпуклых или	
двояковогнутых, с одинаковыми радиусами поверхностей линз,	
находится на оптической оси внутри линзы	
4) точка, которая у двояковыпуклых или двояковогнутых, с	
одинаковыми радиусами поверхностей линз, находится на	
оптической оси внутри линзы	
5) координата, которая у двояковыпуклых или	
двояковогнутых, с одинаковыми радиусами поверхностей	
линз, находится на оптической оси внутри линзы	
96. ГЛАВНЫЙ ФОКУС ЛИНЗЫ — ЭТО	ОПК-1
1) точка, в которую собирается пучок света,	
распространяющийся параллельно главной оптической оси	
2) точка, в которую собирается пучок света,	
распространяющийся перпендикулярно главной оптической	
оси	
3) точка, в которой рассеивается пучок света,	
распространяющийся параллельно главной оптической оси	
4) точка, в которой рассеивается пучок света,	

распространяющийся перпендикулярно главной оптической	
ОСИ	
5) точка, в которую собирается пучок света,	
распространяющийся перпендикулярно главной оптической оси	
97. ОДНОЙ ИЗ ВАЖНЕЙШИХ ХАРАКТЕРИСТИК	ОПК-1
МИКРОСКОПА КАК ОПТИЧЕСКОГО ПРИБОРА ЯВЛЯЕТСЯ	
ПРЕДЕЛ РАЗРЕШЕНИЯ, КОТОРЫЙ ЗАВИСИТ	
1) от длины тубуса микроскопа и фокусного расстояния	
окуляра	
2) от длины волны света и расстояния наилучшего зрения	
3) от длины волны света и числовой апертуры	
4) от длины волны света и показателя преломления покровного	
стекла	
98. ОПТИЧЕСКАЯ ДЛИНА ТУБУСА – ЭТО РАССТОЯНИЕ	ОПК-1
МЕЖДУ	
1) передним фокусом объектива и передним фокусом окуляра	
2) передним фокусом объектива и задним фокусом окуляра	
3) задним фокусом объектива и передним фокусом окуляра	
4) задним фокусом объектива и задним фокусом окуляра	
99. ПРИ ВСТРЕЧЕ СВЕТА С ОПТИЧЕСКОЙ	ОПК-1
НЕОДНОРОДНОСТЬЮ, РАЗМЕРЫ КОТОРОЙ СРАВНИМЫ	
С ДЛИНОЙ ВОЛНЫ СВЕТА ПРОИСХОДЯТ	
1) изменение фаз колебаний световых волн и их дифракция	
2) отражение и преломление световых волн	
3) дифракция и интерференция световых волн	
4) изменение длины световых волн и их дифракция	
100. ПРИ ПЕРЕХОДЕ СВЕТА ИЗ СРЕДЫ ОПТИЧЕСКИ	ОПК-1
БОЛЕЕ ПЛОТНОЙ, В СРЕДУ ОПТИЧЕСКИ МЕНЕЕ	OTHE I
ПЛОТНУЮ, ПРИ БОЛЬШИХ УГЛАХ ПАДЕНИЯ,	
НАБЛЮДАЕТСЯ ЯВЛЕНИЕ	
1) дифракции	
2) интерференции	
3) преломления	
4) полного внутреннего отражения	
101. КОГЕРЕНТНЫМИ НАЗЫВАЮТ ВОЛНЫ, СОЗДАЮЩИЕ	ОПК-1
В КАЖДОЙ ТОЧКЕ ПРОСТРАНСТВА	OHK-1
1) колебания, с изменяющейся со временем разности фаз	
2) колебания, с неизменяющейся со временем разностью фаз	
3) колебания, с неизменяющейся со временем амплитудой	
4) колебания, с изменяющейся со временем амплитудой	
1 / ·	
5) колебания, с изменяющейся со временем длиной волны	ОПИ 1
102. ПРИ РАСПРОСТРАНЕНИИ СВЕТА В СРЕДЕ С	ОПК-1
РЕЗКИМИ НЕОДНОРОДНОСТЯМИ, ПРОИСХОДИТ ПРОНИКНОВЕНИЕ СВЕТОВОЙ ВОЛНЫ В ОБЛАСТЬ	
ГЕОМЕТРИЧЕСКОЙ ТЕНИ. СОВОКУПНОСТЬ ПОДОБНЫХ	

ЯВЛЕНИЙ НАЗЫВАЕТСЯ	
1) дифракцией	
2) интерференцией	
3) преломлением	
' -	
, <u>, , , , , , , , , , , , , , , , , , </u>	
5) проникновением	ОПК-1
103. СОГЛАСНО ПРИНЦИПУ ГЮЙГЕНСА, КАЖДАЯ	OHK-I
ТОЧКА ФРОНТА ВОЛНЫ, В КОТОРУЮ ПРИШЛА	
СВЕТОВАЯ ВОЛНА, ЯВЛЯЕТСЯ	
1) источником третичных волн	
2) источником экспоненциальных волн	
3) источником вторичных волн	
4) источником синусоидальных волн	
5) источником ослабленных волн	0774.4
104. СОГЛАСНО ПРИНЦИПУ ГЮЙГЕНСА, КАЖДУЮ	ОПК-1
ТОЧКУ МОЖНО РАССМАТРИВАТЬ КАК ИСТОЧНИК, В	
КОТОРЫЙ ПРИШЛА СВЕТОВАЯ ВОЛНА, ЯВЛЯЕТСЯ	
1) источником третичных волн	
2) источником экспоненциальных волн	
3) источником вторичных волн	
4) источником синусоидальных волн	
5) источником ослабленных волн	
105. ПОВЕРХНОСТЬ, ОТДЕЛЯЮЩАЯ ОБЛАСТЬ, В	ОПК-1
КОТОРОЙ В ДАННЫЙ МОМЕНТ ВРЕМЕНИ УЖЕ ИМЕЮТ	
МЕСТО ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ, ОТ	
ОБЛАСТИ, В КОТОРУЮ ВОЛНА ЕЩЕ НЕ УСПЕЛА	
РАСПРОСТРАНИТЬСЯ, НАЗЫВАЮТ	
1) источником вторичных волн	
2) источником экспоненциальных волн	
3) источником синусоидальных волн	
4) источником прямолинейных волн	
5) фронтом волны	
106. ДИФРАКЦИЕЙ НАЗЫВАЕТСЯ	ОПК-1
1) огибание волнами препятствий, встречающихся на их пути	
2) отражение волн от препятствий, встречающихся на их пути	
3) преломление волн на препятствиях, встречающихся на их	
пути	
4) поглощение волнами препятствий, встречающихся на их	
пути	
107. ДИФРАКЦИОННАЯ РЕШЕТКА – ЭТО	ОПК-1
1) система параллельных щелей равной ширины, лежащих в	
одной плоскости и разделенных различными по ширине	
непрозрачными промежутками	
2) система перпендикулярных щелей равной ширины, лежащих	
в одной плоскости и разделенных равными по ширине	
2 option into account it propositions problem ito mitpinio	

непрозрачными промежутками	
3) система параллельных щелей равной ширины, лежащих в	
одной плоскости и разделенных равными по ширине	
непрозрачными промежутками	
4) система параллельных щелей различной ширины, лежащих в	
одной плоскости и разделенных равными по ширине	
непрозрачными промежутками	
5) система перпендикулярных щелей различной ширины,	
лежащих в одной плоскости и разделенных различными по	
ширине непрозрачными промежутками	
108. ДИФРАКЦИОННАЯ КАРТИНА НА РЕШЕТКЕ	ОПК-1
ОПРЕДЕЛЯЕТСЯ КАК РЕЗУЛЬТАТ	-
1) взаимной интерференции волн, проходящих через щели	
решетки	
2) взаимной интерференции волн, идущих от трех центральных	
шелей	
3) взаимной интерференции волн, идущих от центральной	
шели	
4) взаимной интерференции волн, идущих от двух крайних	
щелей	
5) взаимного затухания волн, идущих от всех щелей	
109. ВОЛНЫ, ВЫХОДЯЩИЕ ИЗ ЩЕЛЕЙ	ОПК-1
	OHK-1
ДИФРАКЦИОННОЙ РЕШЕТКИ	
1) интерферируют между собой, по некоторым направлениям	
усиливают друг друга, а по некоторым гасят	
2) экстрапалируют между собой, по некоторым направлениям	
усиливают друг друга, а по некоторым гасят	
3) дифференцируют между собой, по некоторым	
направлениям усиливают друг друга, а по некоторым гасят	
4) интегрируют между собой, по некоторым направлениям	
усиливают друг друга, а по некоторым гасят	
5) разделяются между собой, по некоторым направлениям	
усиливают друг друга, а по некоторым гасят	
110. ПРИ ОСВЕЩЕНИИ ДИФРАКЦИОННОЙ РЕШЕТКИ	ОПК-1
БЕЛЫМ СВЕТОМ В ФОКАЛЬНОЙ ПЛОСКОСТИ В	
МАКСИМУМЕ НУЛЕВОГО ПОРЯДКА ПОЛУЧИТСЯ	
1) красная полоска	
2) фиолетовая полоска	
3) оранжевая полоска	
4) зеленая полоска	
5) белая полоска	
111. ЯВЛЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА МОЖНО	ОПК-1
ПРОДЕМОНСТРИРОВАТЬ С ПОМОЩЬЮ	
1) уравнения Эйнштейна	
2) закона Шарля	

3) закона Ома	
4) опыта Юнга	
5) уравнения Нернста	
112. ИНТЕРФЕРИРОВАТЬ МОГУТ ВОЛНЫ	ОПК-1
1) любой природы	_
2) только звуковые	
3) только электромагнитные	
4) только механические	
5) только световые	
113. ПРИ ОСВЕЩЕНИИ ДИФРАКЦИОННОЙ РЕШЕТКИ	ОПК-1
МОНОХРОМАТИЧЕСКИМ СВЕТОМ ПРОИСХОДИТ	
1) отражение	
2) преломление	
3) поглощение	
4) дифракция	
5) интерференция	
114. ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ	ОПК-1
ГЕЛИЙ – НЕОНОВОГО ЛАЗЕРА МОЖНО ИСПОЛЬЗОВАТЬ	
1) поляриметр	
2) дифракционную решетку	
3) стопку стеклянных пластин	
4) турмалин	
5) призму Николя	
115. ВСТАВЬТЕ НЕДОСТАЮЩИЕ СЛОВА В ФРАЗУ	ОПК-1
«ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ ОСНОВАНЫ	
НА ГЕНЕРАЦИИ И СВЕТА С ПОМОЩЬЮ	
ВЫНУЖДЕННОГО ИЗЛУЧЕНИЯ»	
1) ослаблении, индуцированного	
2) усилении, спонтанного	
3) ослаблении, спонтанного	
4) механизации, индуцированного	
5) усилении, индуцированного	
116. ВСТАВЬТЕ НЕДОСТАЮЩИЕ СЛОВА В ФРАЗУ	ОПК-1
«КАЧЕСТВЕННОЕ ОТЛИЧИЕ ЛАЗЕРА ОТ ДРУГИХ	
ИСТОЧНИКОВ СВЕТА ЗАКЛЮЧАЕТСЯ В ТОМ, ЧТО В	
ОБЫЧНЫХ ИСТОЧНИКАХ ИСПОЛЬЗУЕТСЯ	
ИЗЛУЧЕНИЕ, В ЛАЗЕРАХ –»	
1) преломленное, вынужденное	
2) вынужденное, спонтанное	
3) спонтанное, вынужденное	
4) спонтанное, отраженное	
5) механическое, электромагнитное	
117. ВСТАВЬТЕ НЕДОСТАЮЩИЕ СЛОВА В ФРАЗУ	ОПК-1
«ВТОРИЧНЫЕ КОГЕРЕНТНЫЕ ВОЛНЫ, ОБРАЗУЮЩИЕСЯ	
В РЕЗУЛЬТАТЕ, РАСПРОСТРАНЯЯСЬ ПО ВСЕМ	

НАПРАВЛЕНИЯМ,, ОБРАЗУЯ КАРТИНУ» 1) дифракции, интерферируют, дифракционную картину 2) интерференции, дифрагируют, интерференционную картину 3) дифракции, интерферируют, интерференционную картину 4) интерференции, интерферируют, дифракционную картину 5) дифракции, дифрагируют, интерференционную картину	
118. ДЛИНУ ВОЛНЫ ПАДАЮЩЕГО СВЕТА МОЖНО ОПРЕДЕЛИТЬ ИЗ ФОРМУЛЫ, ЗНАЯ ПЕРИОД РЕШЕТКИ (d), УГОЛ (α), ПОД КОТОРЫМ ВИДЕН МАКСИМУМ k -ГО ПОРОЯДКА 1) $\lambda = d k / Sin \alpha$ 2) $\lambda = d / Sin \alpha k$ 4) $\lambda = k / Sin \alpha d$ 5) $\lambda = d Sin \alpha k$	ОПК-1
119. ПРИ НОРМАЛЬНОМ ПАДЕНИИ СВЕТА ГЛАВНЫЕ ДИФРАКЦИОННЫЕ МАКСИМУМЫ ВОЗНИКАЮТ ПРИ УСЛОВИИ 1) $dSin\alpha = \pm k\lambda$ 2) $d/Sin\alpha = \pm k\lambda$ 3) $d/Sin\alpha = \pm k/\lambda$ 4) $d+Sin\alpha = \pm (k+\lambda)$ 5) $dSin\alpha = \pm k/\lambda$	ОПК-1
120. УКАЖИТЕ ФОРМУЛУ ЭНЕРГИИ КВАНТА СВЕТА 1) $E = hv$ 2) $E = mgh$ 3) $E = mv^2/2$ 4) $E = k ln(I/I_o)$ 5) $E = E_o cos \varphi$	ОПК-1
121. УКАЖИТЕ ПОСТОЯННУЮ ПЛАНКА В ФОРМУЛЕ ЭНЕРГИИ КВАНТА СВЕТА $E = hc/\lambda$ 1) E 2) h 3) c 4) λ	ОПК-1
122. ИЗЛУЧЕНИЕ, ИСПУСКАЕМОЕ ПРИ САМОПРОИЗВОЛЬНОМ ПЕРЕХОДЕ АТОМА ИЗ ОДНОГО СОСТОЯНИЯ В ДРУГОЕ, НАЗЫВАЮТ 1) энергетическим 2) спонтанным 3) вынужденным	ОПК-1

4) электрическим	
5) магнитным	
123. СПОНТАННОЕ ИЗЛУЧЕНИЕ ФОТОНА - ЭТО	ОПК-1
1) процесс, протекающий под воздействием электромагнитных	
колебаний	
2) вынужденный процесс, протекающий независимо и без	
каких-либо внешних воздействий	
3) вынужденный процесс, протекающий под воздействием	
каких-либо внешних воздействий	
4) самопроизвольный процесс, протекающий независимо и без	
каких-либо внешних воздействий	
5) самопроизвольный процесс, протекающий под воздействием	
механических колебаний	
124. ИНВЕРСНАЯ НАСЕЛЕННОСТЬ - ЭТО	ОПК-1
1) равновесное состояние среды, при котором в возбужденном	
состоянии концентрация атомов больше, чем в основном	
2) равновесное состояние среды, при котором в возбужденном	
состоянии концентрация атомов меньше, чем в основном	
3) неравновесное состояние среды, при котором в основном	
состоянии концентрация атомов больше, чем в возбужденном	
4) неравновесное состояние среды, при котором в	
возбужденном состоянии концентрация молекул урана больше,	
чем в основном	
5) неравновесное состояние среды, при котором в	
возбужденном состоянии концентрация атомов больше, чем в	
основном	
125. СРЕДА, В КОТОРОЙ СОЗДАНА ИНВЕРСНАЯ	ОПК-1
НАСЕЛЕННОСТЬ УРОВНЕЙ, НАЗЫВАЕТСЯ	
1) энергетической	
2) спонтанной	
3) вынужденным	
4) активной	
5) пассивной	
126. СОСТОЯНИЕ ВЕЩЕСТВА С ИНВЕРСНОЙ	ОПК-1
НАСЕЛЕННОСТЬЮ – ЭТО СОСТОЯНИЕ С	
1) отрицательной термодинамической контрактурой	
2) положительной термодинамической контрактурой	
3) нулевой термодинамической температурой	
4) положительной термодинамической температурой	
5) отрицательной термодинамической температурой	
127. ПРОЦЕСС ПОДДЕРЖКИ ИНВЕРСНОЙ	ОПК-1
НАСЕЛЕННОСТИ УРОВНЕЙ НАЗЫВАЮТ	
1) излучением	
2) поглощением	
3) накачкой	

4) выкачкой	
5) индуцированием	
128. ДЛЯ ПОЛУЧЕНИЯ ИНДУЦИРОВАННОГО ИЛИ	ОПК-1
СТИМУЛИРОВАННОГО ИЗЛУЧЕНИЯ НЕОБХОДИМО	
СОЗДАТЬ ОСОБОЕ СОСТОЯНИЕ ИЗЛУЧАЮЩЕГО	
ВЕЩЕСТВА, НАЗЫВАЕМОЕ	
1) активным	
2) пассивным	
3) спонтанным	
4) вынужденным	
5) инверсным	
129. ИЗЛУЧЕНИЕ АТОМА, ВЫЗВАННОЕ ВНЕШНИМ	ОПК-1
ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ, НАЗЫВАЕТСЯ	
1) вынужденным или индуцированным	
2) активным или индуцированным	
3) вынужденным или спонтанным	
4) пассивным или индуцированным	
5) вынужденным или инверсным	
130. ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, КОТОРОЕ	ОПК-1
ВОЗНИКАЕТ ПРИ ПЕРЕХОДЕ ИЗ ВОЗБУЖДЕННОГО	
СОСТОЯНИЯ В ОСНОВНОЕ, ПОД ДЕЙСТВИЕМ	
ВНЕШНЕГО ИЗЛУЧЕНИЯ, НАЗЫВАЮТ	
1) вынужденным или спонтанным	
2) активным или индуцированным	
3) вынужденным или индуцированным	
4) пассивным или индуцированным	
5) вынужденным или инверсным	
131. ПОСЛЕ ВЗАИМОДЕЙСТВИЯ ФОТОНА С АТОМОМ, ОТ	ОПК-1
АТОМА БУДУТ РАСПРОСТРАНЯТЬСЯ ДВА ФОТОНА:	
1) вынуждающий и вынужденный	
2) спонтанный и вынужденный	
3) вынуждающий и спонтанный	
4) вынуждающий и пассивный	
5) инверсный и активный	
132. ИНТЕНСИВНОСТЬ СВЕТА, ПРОШЕДШЕГО ЧЕРЕЗ	ОПК-1
СЛОЙ ВЕЩЕСТВА, ЗАВИСИТ ОТ ТОЛЩИНЫ СЛОЯ ПО	
ЗАКОНУ	
1) Ламберта	
2) Бугера	
3) Гука	
4) Ньютона	
5) Брюстера	
133. В ОБЫЧНЫХ УСЛОВИЯХ БОЛЬШИНСТВО АТОМОВ	ОПК-1
ВЕЩЕСТВА НАХОДЯТСЯ В ОСНОВНОМ СОСТОЯНИИ,	
МЕНЬШАЯ ИХ ЧАСТЬ В	

DOSENWHEITHOM D.TAROM CHYHAE MILIAMEEM	
ВОЗБУЖДЕННОМ. В ТАКОМ СЛУЧАЕ МЫ ИМЕЕМ НАСЕЛЁННОСТЬ ЭНЕРГЕТИЧЕСКИХ УРОВНЕЙ	
1) нормальную	
2) аномальную	
3) вынужденным	
4) активную	
5) пассивную	07774.4
134. ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ	ОПК-1
1) не поляризовано	
2) когерентно	
3) синусоидально	
4) пассивно	
135. ЗАВИСИМОСТЬ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ	ОПК-1
СВЕТА ОТ ДЛИНЫ ВОЛНЫ НАЗЫВАЮТ	
1) дисперсией	
2) дифракцией	
3) интерференцией	
4) преломлением	
5) отражением	
136. СПЕКТР ИСПУСКАНИЯ – ЭТО СПЕКТР	ОПК-1
1) образуемый излучением светящихся тел	
2) образуемый поглощением светящихся тел	
3) образуемый излучением поглощающих тел	
4) образуемый поглощением стационарных тел	
5) образуемый излучением характеристических тел	
137. СПЕКТР ПОГЛОЩЕНИЯ ОТРАЖАЕТ ЗАВИСИМОСТЬ	ОПК-1
1) показателя преломления данного вещества от частоты света	
2) показателя преломления данного вещества от длины волны	
света	
3) показателя поглощения данного вещества от интенсивности	
света	
4) показателя поглощения данного вещества от частоты света	
5) показателя отражения данного вещества от частоты света	
138. ЕСЛИ ТЕЛО РАВНОМЕРНО ПРОПУСКАЕТ ЛЮБЫЕ	ОПК-1
ВОЛНЫ ВИДИМОГО СПЕКТРА, ОНО НАЗЫВАЕТСЯ	
1) семицветным	
2) цветным	
3) бесцветным	
4) белым	
5) черным	
139. ЕСЛИ ТЕЛО РАВНОМЕРНО И ПОЛНОСТЬЮ	ОПК-1
ПОГЛОЩАЕТ ВСЕ ВОЛНЫ ВИДИМОГО СПЕКТРА, ОНО	
НАЗЫВАЕТСЯ	
1) семицветным	
2) цветным	
-)	

2) 6	
3) бесцветным	
4) белым	
5) черным	OTT 4.4
140. ТЕЛА, РАВНОМЕРНО И ПОЛНОСТЬЮ	ОПК-1
ООТРАЖАЮЩИЕ ВСЕ ВОЛНЫ ВИДИМОГО СПЕКТРА ПРИ	
ПАДЕНИИ НА НИХ БЕЛОГО СВЕТА, ПРЕДСТАВЛЯЮТСЯ	
ГЛАЗУ	
1) семицветными	
2) цветными	
3) бесцветными	
4) белыми	
5) черными	
141. В ЦВЕТОВОМ СПЕКТРЕ НАИБОЛЬШАЯ ДЛИНА	ОПК-1
ВОЛНЫ И НАИМЕНЬШИЙ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ	
СООТВЕТСТВУЕТ	
1) красному свету	
2) оранжевому свету	
3) желтому свету	
4) зеленому свету	
5) голубому свету	
142. ЗА КРАСНОЙ ГРАНИЦЕЙ ВИДИМОГО СПЕКТРА	ОПК-1
ЛЕЖИТ ОБЛАСТЬ	
1) рентгеновского излучения	
2) инфракрасного излучения	
3) ультрафиолетового излучения	
4) рентгеноструктурного излучения	
5) ионизирующего излучения	
143. ЗА ОБЛАСТЬЮ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ	ОПК-1
ЛЕЖИТ ОБЛАСТЬ	OTHC 1
1) рентгеновского излучения	
2) инфракрасного излучения	
3) ультрафиолетового излучения	
4) рентгеноструктурного излучения	
5) ионизирующего излучения	
144. МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ ИМЕЕТ	ОПК-1
СПЕКТР В ВИДЕ	OTIK-1
1) семи цветных полос	
<u> </u>	
2) пяти цветных полос	
3) трех цветных полос	
4) двух цветных полос	
5) одной узкой линии	OTH: 1
145. СПЕКТР НАГРЕТЫХ ТВЕРДЫХ И ЖИДКИХ ТЕЛ	ОПК-1
1) линейчатый	
2) сплошной	
3) электромагнитный	

4) ионизационный	
5) тормозной тел	
146. СПЕКТР НАГРЕТЫХ ГАЗОВ И ПАРОВ, ПРИ	ОПК-1
ДАВЛЕНИЯХ, НЕ СИЛЬНО СПЕВОСХОДЯЩИХ	
НОРМАЛЬНОЕ	
1) линейчатый	
2) сплошной	
3) электромагнитный	
4) ионизационный	
5) тормозной тел	
147. ПО ЗАКОНУ ФОТОЭФФЕКТА, МАКСИМАЛЬНАЯ	ОПК-1
КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ФОТОЭЛЕКТРОНОВ	
ЗАВИСИТ ОТ	
1) частоты падающего излучения	
2) интенсивности падающего излучения	
3) амплитуды падающего излучения	
4) фазы падающего излучения	
148. ВНЕШНИЙ ФОТОЭФФЕКТ СОСТОИТ В	ОПК-1
1) испускании протонов веществом под действием света	
2) испускании нейтронов веществом под действием света	
3) испускании позитронов веществом под действием света	
4) испускании электронов веществом под действием света	
5) испускании фотонов веществом под действием света	
149. ФОТОЭФФЕКТ ПРОИСХОДИТ В РЕЗУЛЬТАТЕ	ОПК-1
ПОГЛОЩЕНИЯ	
1) электронов свободными фотонами	
2) фотонов свободными электронами	
3) фотонов свободными дырками	
4) дырок свободными фотонами	
5) нейтронов свободными электронами	
150. КАЖДЫЙ ФОТОН ВЗАИМОДЕЙСТВУЕТ С	ОПК-1
1) десятью электронами	
2) пятью электронами	
3) одним электроном	
4) десятью протонами	
5) пятью протонами	
151. ЕСЛИ ПРОЦЕСС ЗАВЕРШАЕТСЯ ВЫХОДОМ	ОПК-1
ЭЛЕКТРОНОВ ЗА ПРЕДЕЛЫ ВЕЩЕСТВА, ТО	
ФОТОЭФФЕКТ НАЗЫВАЕТСЯ	
1) внутренним	
2) внешним	
3) спонтанным	
5) индуцированным	
4) вынужденным	

152. ЕСЛИ В РЕЗУЛЬТАТЕ ФОТОЭФФЕКТА ЭЛЕКТРОНЫ	ОПК-1
ОСТАЮТСЯ ВНУТРИ ВЕЩЕСТВА, ТО ЕГО НАЗЫВАЮТ	
1) внутренним	
2) внешним	
3) спонтанным	
4) вынужденным	
5) индуцированным	0774.4
153. ВНУТРЕННИЙ ФОТОЭФФЕКТ ПРОЯВЛЯЕТСЯ В	ОПК-1
1) изменении давления носителей зарядов в среде	
2) изменении концентрации носителей зарядов в среде	
3) изменении концентрации носителей зарядов в среде	
4) изменении концентрации носителей зарядов в среде	
5) изменении концентрации носителей зарядов в среде	
154. ВНУТРЕННИМ ФОТОЭФФЕКТОМ НАЗЫВАЮТ	ОПК-1
1) перераспределение электронов по энергетическим уровням в	
в металлах под действием света	
2) перераспределение фотонов по энергетическим уровням в	
диэлектриках и полупроводниках (но не в металлах) под	
действием света	
3) перераспределение электронов по энергетическим уровням в	
диэлектриках и полупроводниках (но не в металлах) под	
действием света	
4) перераспределение протонов по энергетическим уровням в	
диэлектриках и полупроводниках (но не в металлах) под	
действием света	
5) перераспределение нейтронов по энергетическим уровням	
в металлах под действием света	
155. ВНУТРЕННИЙ ФОТОЭФФЕКТ ЗАКЛЮЧАЕТСЯ В ТОМ,	ОПК-1
ЧТО ПРИ ОСВЕЩЕНИИ СВЕТОМ ПОЛУПРОВОДНИКОВ	
1) не изменяется их электропроводимость	
2) понижается их электропроводимость	
3) повышается их электропроводимость	
4) их электропроводимость понижается по экспоненциальному	
закону	
5) их электропроводимость изменяется по синусоидальному	
закону	
156. ВНУТРЕННИЙ ФОТОЭФФЕКТ ПРИВОДИТ К	ОПК-1
1) приводит к возникновению фотопроводимости или	
внешнего фотоэффекта	
2) приводит к прекращению фотопроводимости или	
вентильного фотоэффекта	
3) приводит к возникновению инверсной населенности	
4) приводит к возникновению фотопроводимости или	
вентильного фотоэффекта	
5) приводит к возникновению максимальной кинетической	

энергии или внешнего фотоэффекта	
157. ВНЕШНИЙ ФОТОЭФФЕКТ ДЛЯ	ОПК-1
1) полупроводников	
2) диэлектриков	
3) металлов	
4) запирающего слоя	
5) селенового фотоэлемента	
158. КРАСНАЯ ГРАНИЦА СООТВЕТСТВУЕТ	ОПК-1
1) энергии фотона, равной работе выхода электронов из	
металла	
2) энергии электрона, равной работе выхода фотонов из	
металла	
3) энергии протона, равной работе выхода фотонов из металла	
4) энергии нейтрона, равной работе выхода электронов из	
металла	
5) энергии позитрона, равной работе выхода бозонов из металла	
159. СИЛА ФОТОТОКА НАСЫЩЕНИЯ	ОПК-1
1) обратно пропорциональна падающему на катод	
фотоэлемента световому потоку	
2) прямо пропорциональна падающему на катод фотоэлемента	
световому потоку	
3) обратно пропорциональна падающему на анод фотоэлемента	
световому потоку	
4) прямо пропорциональна падающему на анод фотоэлемента	
световому потоку	
160. ЧИСЛО ФОТОЭЛЕКТРОНОВ, ВЫРЫВАЕМЫХ С	ОПК-1
ПОВЕРХНОСТИ МЕТАЛЛА ЗА ЕДИНИЦУ ВРЕМЕНИ	
1) пропорционально световому потоку, падающему на металл,	
при неизменном спектральном составе	
2) пропорционально световому потоку, падающему на	
диэлектрик, при неизменном спектральном составе	
3) пропорционально световому потоку, падающему на	
полупроводник, при неизменном спектральном составе	
4) пропорционально интегральной чувствительности, при	
неизменном спектральном составе	
5) пропорционально спектральной чувствительности, при	
неизменном спектральном составе	OTIL 1
161. МАКСИМАЛЬНАЯ НАЧАЛЬНАЯ КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ФОТОЭЛЕКТРОНОВ ОПРЕДЕЛЯЕТСЯ	ОПК-1
1) давлением падающего света и зависит от его интенсивности	
2) потоком падающего света и не зависит от его интенсивности	
3) частотой падающего света и не зависит от его	
интенсивности	
4) плотностью падающего света и зависит от его	

интенсивности	
5) корпускулярными свойствами падающего света и не зависит	
от его интенсивности	
162. ВСТАВЬТЕ НЕДОСТАЮЩИЕ СЛОВА В ЗАКОН ФОТОЭФФЕКТА: «ДЛЯ КАЖДОГО МЕТАЛЛА СУЩЕСТВУЕТ ГРАНИЦА ФОТОЭФФЕКТА, ТО ЕСТЬ	ОПК-1
ДЛИНА ВОЛНЫ, ПРИ КОТОРОЙ ЕЩЕ ФОТОЭФФЕКТ» 1) фиолетовая, максимальная, не возможен 2) зеленая, минимальная, возможен	
3) желтая, минимальная, не возможен	
4) красная, максимальная, возможен	
5) красная, минимальная, не возможен	OFFIC 1
163. ЭЛЕКТРОН ВЫХОДИТ ИЗ МЕТАЛЛА, ЕСЛИ	ОПК-1
1) потенциальная энергия превышает работу выхода электрона 2) потенциальная энергия не превышает работу выхода	
электрона	
3) кинетическая энергия превышает работу выхода электрона	
4) кинетическая энергия не превышает работу выхода	
электрона	
5) тепловая энергия превышает работу выхода электрона	OFFIC 1
164. ДЛЯ ВОЗНИКНОВЕНИЯ ФОТОЭФФЕКТА В ВАКУУМНОМ ФОТОЭЛЕМЕНТЕ ОСВЕЩАЮТ	ОПК-1
1) p-n переход	
2) $n-p$ переход	
3) запирающий слой	
4) анод	
5) катод	0774.4
165. КАК ИЗМЕНИТСЯ ЗАРЯД, В РЕЗУЛЬТАТЕ ФОТОЭФФЕКТА, ПОЛОЖИТЕЛЬНО ЗАРЯЖЕННОГО ЦИНКА	ОПК-1
1) изменится	
2) не изменится	
3) уменьшится	
4) увеличится	
166. ВНЕШНИЙ ФОТОЭФФЕКТ ОПИСЫВАЕТСЯ	ОПК-1
УРАВНЕНИЕМ ЭЙНШТЕЙНА, КОТОРОЕ ИМЕЕТ ВИД	
1) $hv = A + mv_{max}^2 / 2$	
$2) hv = A - mv_{max}^2 / 2$	
3) hv = A + mgh/2	
4) $hv = A - mgh/2$	
167. ФОТОЭЛЕКТРОНЫ, КАК УСТАНОВЛЕНО НА ОПЫТЕ, ИМЕЮТ	ОПК-1
1) линейчатый спектр кинетических энергий и скоростей	

	7
2) непрерывный спектр кинетических энергий и линейчатый	
спектр скоростей	
3) линейчатый спектр кинетических энергий и непрерывный	
спектр скоростей	
4) непрерывный спектр кинетических энергий и скоростей	OFFIC 1
168. МОНОХРОМНЫЙ СВЕТОВОЙ ПОТОК СОСТОИТ ИЗ	ОПК-1
1) фотонов с одинаковой энергией	
2) фотонов с различной энергией	
3) электронов с одинаковой энергией	
4) электронов с различной энергией	
5) позитронов с одинаковой энергией	OTT 4
169. НОСИТЕЛЯМИ ТОКА В ПОЛУПРОВОДНИКАХ	ОПК-1
ЯВЛЯЮТСЯ	
1) электроны	
2) нейтроны	
3) кварки	
4) дырки	
5) электроны и дырки	
170. ИНТЕГРАЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ	ОПК-1
ХАРАКТЕРИЗУЕТ	
1) способность фотоэлемента реагировать на воздействие	
монохроматического светового потока	
2) способность фотоэлемента реагировать на воздействие	
светового потока сложного излучения	
3) способность фотоэлемента реагировать на воздействие	
светового потока излучаемого оптическим квантовым	
генератором	
4) силу фототока при воздействии монохроматического	
светового потока	
5) отсутствие способности фотоэлемента реагировать на	
воздействие монохроматического светового потока	
171. СПЕКТРАЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ ОПРЕДЕЛЯЕТ	ОПК-1
1) способность фотоэлемента реагировать на воздействие	
СВЕТОВОГО	
потока сложного излучения	
2) отсутствие способности фотоэлемента реагировать на	
воздействие светового потока сложного излучения	
3) силу фототока при воздействии монохроматического	
светового потока	
4) силу анодного напряжения при воздействии светового	
потока сложного излучения	
5) максимальную начальную кинетическую энергию	
фотоэлектронов	
172. СИЛА ТОКА НАСЫЩЕНИЯ ЛИНЕЙНО ЗАВИСИТ ОТ	ОПК-1
1) термоэлектронной эмиссии электронов	

2) reported the result water to	
2) красной границы металла	
3) электронно – оптических преобразователей	
4) характеристик полупроводников	
5) светового потока	OFF 1
173. ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ ВОЗНИКАЕТ	ОПК-1
ВСЛЕДСТВИЕ	
1) перехода возбужденного атома на более низкий	
энергетический уровень под действием синхронизированного с	
переходом атомов радиоактивного излучения	
2) перехода возбужденного атома на более низкий	
энергетический уровень под действием спонтанного излучения	
рабочего тела	
3) перехода возбужденного атома на более низкий	
энергетический уровень под действием энергетической накачки	
4) перехода возбужденного атома на более низкий	
энергетический уровень под действием электромагнитного	
поля фотона с энергией, равной разности энергий этих уровней	
174. К ОСОБЕННОСТЯМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ	ОПК-1
ОТНОСЯТСЯ	
1) монохроматичность, насыщенность спектра, узость пучка	
2) монохроматичность, однонаправленность, высокая	
спектральная плотность	
3) монохроматичность, расходимость, поляризованность	
4) монохроматичность, яркость, жесткость	
175. ДИАПАЗОН ДЛИН ВОЛН ВИДИМОГО СВЕТА	ОПК-1
1) 380 - 730 cm	OTAL I
2) 380 - 730 mm	
3) 380 - 730 мкм	
4) 380 - 730 нм	
176. КРАСНЫЙ СВЕТ ИМЕЕТ ДЛИНЫ ВОЛН В	ОПК-1
ДИАПАЗОНЕ	OTHC 1
1) 380 - 730 mm	
2) 620 - 700 mkm	
3) 620 - 700 нм	
4) 380 - 730 cm	
177. МЕНЬШИЕ, ЧЕМ ВИДИМЫЙ СВЕТ ДЛИНЫ ВОЛН	ОПК-1
имеет	OTIK-1
1) ультрафиолетовое излучение	
2) инфракрасное излучение	
3) тепловое излучение	
4) радиоволновое излучение	
178. СВЕТ ЯВЛЯЕТСЯ	ОПК-1
	OHK-I
1) ультразвуковой волной	
2) механической волной	
3) тепловым излучением	

4) электромагнитным излучением	
179. ПРИ ПОВЫШЕНИИ ТЕМПЕРАТУРЫ	ОПК-1
СОПРОТИВЛЕНИЕ ПОЛУПРОВОДНИКОВ	
1) остается неизменным	
2) уменьшается	
3) увеличивается	
4) увеличивается до того, по мере приближения к температуре	
фазового перехода	
180. ОТРИЦАТЕЛЬНАЯ ОБРАТНАЯ СВЯЗЬ	ОПК-1
1) увеличивает коэффициент усиления, уменьшает полосу	
пропускания	
2) увеличивает коэффициент усиления, увеличивает полосу	
пропускания	
3) уменьшает коэффициент усиления, увеличивает полосу	
пропускания	
4) уменьшает коэффициент усиления, уменьшает полосу	
пропускания	
181. ТОКОВЫЙ ДИПОЛЬ – ЭТО	ОПК-1
1) система из двух разнополярных электрических терминалов,	
находящихся в проводящей среде и подключенных к источнику	
ЭДС	
2) система из двух разнополярных электрических терминалов,	
находящихся в диэлектрической среде и подключенных к	
источнику ЭДС	
3) система из двух разнополярных электрических зарядов,	
находящихся в проводящей среде	
4) система из двух разнополярных электрических зарядов,	
находящихся в диэлектрической среде	
182. ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ – ЭТО	ОПК-1
1) система из двух разнополярных электрических терминалов,	
находящихся в проводящей среде	
2) система из двух разнополярных электрических терминалов,	
находящихся в диэлектрической среде	
3) система из двух разнополярных электрических зарядов,	
находящихся в проводящей среде	
4) система из двух разнополярных электрических зарядов,	
находящихся в диэлектрической среде	OFTIG 1
183. ТЕПЛОВЫМ НАЗЫВАЕТСЯ ПРЕОБРАЗОВАТЕЛЬ,	ОПК-1
ПРИНЦИП ДЕЙСТВИЯ КОТОРОГО ОСНОВАН НА	
1) на механических процессах, входной величиной которого	
является температура	
2) на волновых процессах, входной величиной которого	
является температура	
3) на электромагнитных процессах, входной величиной	
которого является температура	

4) на тепловых процессах, входной величиной которого	
является температура	
184. ТЕРМОПАРЫ (ТЕРМОПРЕОБРАЗОВАТЕЛИ) СОСТОЯТ	ОПК-1
ИЗ	
1) двух разных проводников и двух соединений (пар) этих	
проводников	
2) проводника и диэлектрика, и двух их соединений (пар)	
3) проводника и полупроводника, и двух их соединений (пар)	
4) двух разных диэлектриков и двух их соединений (пар)	
185. ТЕРМОПАРОЙ МОЖНО ИЗМЕРИТЬ	ОПК-1
1) только температуру тела	
2) только разности температур	
3) чувствительность термоэлектрического датчика	
4) только температуру холодного спая	
186. ПРИНЦИП РАБОТЫ ТЕРМОПАР ОСНОВАН НА	ОПК-1
1) эффекте термо -ЭДС двух разнородных проводников	
2) эффекте термо -ЭДС двух однородных проводников	
3) чувствительности термоэлектрического датчика	
4) изменении акустического сопротивления холодного спая	
187. ПРИ НЕБОЛЬШОМ ПЕРЕПАДЕ ТЕМПЕРАТУР МЕЖДУ	ОПК-1
СПАЯМИ ТЕРМО - ЭДС	
1) обратно пропорциональная разности температур	
2) пропорциональная разности температур	
3) пропорциональна чувствительности термоэлектрического	
датчика	
4) пропорциональная акустическому сопротивлению	
холодного спая	
188. ОСНОВНЫМ ИСТОЧНИКОМ ТЕРМО – ЭДС ЯВЛЯЕТСЯ	ОПК-1
1) температурная зависимость контактной разности	
потенциалов двух материалов	
2) температурная зависимость контактной разности	
сопротивлений двух материалов	
3) амплитудная зависимость контактной разности потенциалов	
двух материалов	
4) амплитудная зависимость контактной разности	
сопротивлений двух материалов	
189. ДЕЙСТВИЕ КОНТАКТНЫХ ИЗМЕРИТЕЛЬНЫХ	ОПК-1
ПРЕОБРАЗОВАТЕЛЕЙ ТЕМПЕРАТУРЫ ОСНОВАНО НА	
1) использовании функциональных зависимостей параметров	
термометрического вещества от температуры	
2) свойстве металлов и сплавов изменять свое электрическое	
сопротивление в зависимости от температуры	
3) использовании функциональных зависимостей параметров	
термометрического вещества от электромагнитного излучения	
4) использовании функциональных зависимостей параметров	

термометрического вещества от внешних факторов окружающей среды	
11	 ПК-1
ПОДЧИНЯЮЩИХСЯ ЗАКОНУ ОМА, ВЕЛИЧИНА ТЕРМО –	/I IIX-1
ЭДС	
1) не зависит от природы проводников, температуры спаев и	
распределения температур между спаями	
2) зависит от природы проводников, температуры спаев и	
распределения температур между спаями	
температуры	
спаев и распределения температур между спаями	
4) зависит только от природы проводников и от температуры	
спаев и не зависит от распределения температур между спаями 191. ДЕЙСТВИЕ ТЕРМОМЕТРОВ СОПРОТИВЛЕНИЯ О	ПК-1
191. ДЕЙСТВИЕ ТЕРМОМЕТРОВ СОПРОТИВЛЕНИЯ О ОСНОВАНО НА	11IX-1
1) использовании функциональных зависимостей параметров	
термометрического вещества от температуры	
2) свойстве полупроводников изменять свое электрическое	
сопротивление в зависимости от температуры	
3) свойстве металлов и сплавов изменять свое электрическое	
сопротивление в зависимости от температуры	
4) свойстве диэлектриков изменять свое электрическое	
сопротивление в зависимости от температуры 192. В ОСНОВУ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ПРИ О	ПК-1
	711N-1
ПОМОЩИ ТЕРМОПАР ПОЛОЖЕНА ЗАВИСИМОСТЬ	
1) функциональных параметров термометрического вещества	
от температуры	
2) функциональных параметров термометрического вещества	
от температуры плавления металлов	
3) металлов и сплавов изменять свое электрическое	
сопротивление в зависимости от температуры	
4) термоэлектродвижущей силы от разности температур	
холодного и горячего спаев термоэлектродов	
Раздел 6. Физика ионизирующих излучений.	
Тема «Виды ионизирующих излучений. Дозиметрия ионизирующих излу	учении:
поглощенная экспозиционная и эквивалентная дозы.»	
/ / / /	ПК-1
ОБЛУЧЕННОГО ВЕЩЕСТВА, К МАССЕ ЭТОГО	
ЭЛЕМЕНТА, НАЗЫВАЮТ	
1) поглощенной дозой	
2) экспозиционной дозой	
3) эквивалентной дозой	
4) мощностью дозы	

194. ЕДИНИЦЕЙ ИЗМЕРЕНИЯ ЭКВИВАЛЕНТНОЙ ДОЗЫ В СИСТЕМЕ СИ ЯВЛЯЕТСЯ 1) грэй 2) рад	ОПК-1
3) рентген	
4) зиверт	
195. ЕДИНИЦЕЙ ИЗМЕРЕНИЯ ЭКСПОЗИЦИОННОЙ ДОЗЫ	ОПК-1
В СИСТЕМЕ СИ ЯВЛЯЕТСЯ	
1) грэй	
2) рад 3) Ул/кр	
3) Кл/кг 4) рентген	
196. ЕДИНИЦЕЙ ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ В	ОПК-1
СИСТЕМЕ СИ ЯВЛЯЕТСЯ	OTIK 1
1) грэй	
2) рад	
3) Кл/кг	
4) рентген	
197. КОЭФФИЦИЕНТ КАЧЕСТВА ДЛЯ α - ИЗЛУЧЕНИЯ	ОПК-1
PABEH	
1) 1	
2) 3	
3) 10	
4) 20	
198. САМОПРОИЗВОЛЬНЫЙ РАСПАД НЕУСТОЙЧИВЫХ	ОПК-1
1) ионизирующим излучением	
2) радиоактивностью	
3) линейной плотностью ионизации	
4) линейной тормозной способностью	OFFIC 1
199. РАДИОНУКЛИДЫ – ЭТО ИЗОТОПЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ	ОПК-1
1) ядра которых стабильны	
2) ядра которых распадаются в результате радиоактивных	
распадов	
3) атомы которых теряют электроны из своих оболочек	
4) атомы которых спонтанно излучают рентгеновское	
излучение	OTIL 1
200. ПО ЗАКОНУ РАДИОАКТИВНОГО РАСПАДА ЧИСЛО РАДИО-АКТИВНЫХ ЯДЕР, КОТОРЫЕ ЕЩЕ НЕ	ОПК-1
РАСПАЛИСЬ, УБЫВАЕТ СО ВРЕМЕНЕМ ПО	
1) гармоническому закону	
2) экспоненциальному закону	
3) линейному закону	
4) логарифмическому закону	
-, apartpaint reasons, outcome	

201. ЧИСЛО РАСПАДОВ ЯДЕР ПРЕПАРАТА В СЕКУНДУ,	ОПК-1
НАЗЫВАЮТ	
1) активностью	
2) периодом полураспада	
3) мощностью дозы	
4) дозой радиоактивности	OHIC 1
202. АКТИВНОСТЬ РАДИОАКТИВНОГО ИСТОЧНИКА ТЕМ БОЛЬШЕ, ЧЕМ	ОПК-1
1) больше в образце радиоактивных ядер и меньше их период	
полураспада	
2) больше в образце радиоактивных ядер и больше их период	
полураспада	
3) меньше в образце радиоактивных ядер и меньше их период	
полураспада	
4) меньше в образце радиоактивных ядер и больше их период	
полураспада	
203. АКТИВНОСТЬ РАДИОНУКЛИДА, ПРИ КОТОРОЙ ЗА 1	ОПК-1
СЕКУНДУ ПРОИСХОДИТ ОДИН АКТ РАСПАДА,	
СООТВЕТСТВУЕТ	
1) 1 Кл/кг	
2) 1 Дж/кг	
(3) 13B	
4) 1 Бк	
204. БОЛЬШЕЙ ПРОНИКАЮЩЕЙ СПОСОБНОСТЬЮ	ОПК-1
ОБЛАДАЕТ	
1) а –излучение	
2) β – излучение	
3) ү – излучение	
4) µ - излучение	
205. ПРИ НОРМАЛЬНОМ РАДИАЦИОННОМ ФОНЕ	ОПК-1
ЧЕЛОВЕК ПОЛУЧАЕТ В ГОД ЭКВИВАЛЕНТНУЮ ДОЗУ, НЕ	
ПРЕВЫШАЮЩУЮ	
1) 20 бэр;	
2) 170 m3B	
3) 2,4 рентген	
4) 5 m3B	
206. СОБСТВЕННАЯ РАДИОАКТИВНОСТЬ ЖИВЫХ	ОПК-1
ТКАНЕЙ ОПРЕДЕЛЯЕТСЯ РАСПАДАМИ ИЗОТОПА	
1) калия – 40	
2) углерода — 14	
3) рубидия – 87	
4) циркония – 95	

2.2. Вопросы для собеседования по дисциплине

- 1. Механические волны. Уравнение плоской волны. Параметры колебаний и волн.
- 2. Эффект Доплера. Дифракция и интерференция волн.
- 3. Звук. Виды звуков. Волновое сопротивление.
- 4. Объективные (физические) характеристики звука.
- 5. Идеальная жидкость. Законы идеальной жидкости (неразрывности, Бернулли, Торричелли).
- 6. Полное давление в потоке идеальной жидкости. Метод измерения полного, статического, динамического давлений и скорости тока жидкости с помощью манометрических трубок.
- 7. Понятия стационарного потока, ламинарное и турбулентное течения. Линии, поверхности тока (слои). Вязкость. Формула Ньютона, динамический коэффициент вязкости (указать единицы измерения). Ньютоновские и неньютоновские жидкости, примеры.
- 8. Число Рейнольдса. Критическое значение числа Рейнольдса. Кинематический коэффициент вязкости.
- 9. Формула Стокса. Подробно объяснить ход опыта по определения коэффициента вязкости жидкостей методом Стокса, дать формулу для вычисления коэффициента вязкости в этом опыте.
- 10. Подробно объяснить ход опыта по определения коэффициента вязкости жидкостей методом Оствальда, дать формулу для вычисления коэффициента вязкости в этом опыте.
- 11. Условия применимости закона Пуазейля. Формула Пуазейля. Гидравлическое сопротивление.
- 12. Последовательное соединение трубок, два условия. Вывести формулу для гидравлического соединения последовательно соединённых трубок.
- 13. Параллельное соединение трубок, два условия. Вывести формулу для гидравлического соединения параллельно соединённых трубок.
 - 14. Закон Гука. Модуль упругости.
- 15. Геометрическая оптика. Явление полного внутреннего отражения света. Предельный угол полного отражения (чертеж, вывод формулы для определения угла). Волоконная оптика.
- 16. Геометрическая оптика. Явление полного внутреннего отражения света. Предельный угол преломления (чертеж, вывод формулы для определения угла). Волоконная оптика.
- 17. Рефрактометрия. Подробно объяснить ход опыта по определения показателя преломления прозрачной жидкости рефрактометром.
- 18. Микроскопия. Ход лучей в оптическом микроскопе, характеристики изображений в микроскопе и в объективе. Вывод формулы линейного увеличения микроскопа.
- 19. Энергетические характеристики световых потоков, поток светового излучения и плотность потока (интенсивность). Волновая оптика. Дифракционная решетка. Дифракционный спектр.
- 20. Разрешающая способность и предел разрешения оптических приборов (микроскопа, глаза). Понятие о теории Аббе (основные положения теории Аббе, ход лучей по теории Аббе).

- 21. Поляризация света. Способы получения поляризованного света. Оптическая активность.
- 22. Рассеяние света. Виды оптических неоднородностей. Показатель рассеяния. Закон Рэлея.
- 23. Поглощение света. Закон Бугера. Закон Бугера-Ламберта-Бэра. Натуральный молярный показатель поглощения. Молярный показатель поглощения. Коэффициент пропускания. Оптическая плотность, прозрачность.
- 24. Фотоэлектрический эффект. Законы фотоэффекта. Внешний фотоэффект, уравнение Эйнштейна, понятие «красной границы». Применение внешнего фотоэффекта.
- 25. Фотоэлектрический эффект. Законы фотоэффекта. Внутренний фотоэффект. Практическая значимость вентильного фотоэффекта. Устройство и принцип действия селенового фотоэлемента. Дать определение и привести формулу интегральной чувствительности вентильного фотоэлемента.
- 26. Оптические атомные спектры. Молекулярные спектры. Электронные энергетические уровни атомов и молекул.
- 27. Люминесценция. Виды люминесценции. Спектры люминесценции. Фотолюминесценция, закон Стокса для фотолюминесценции. Хемилюминесценция. Люминесцентная микроскопия.
 - 28. Спетрофотометрия. Спектрофлуориметрия.
- 29. Лазер. Распределение Больцмана. Понятия инверсной заселённости, вынужденного излучения. Рабочее вещество лазера. Виды источников энергетической накачки. Основные компоненты конструкции лазера. Особенности лазерного излучения.
- 30. Виды радиоактивных излучений. Источники ионизирующих излучений: естественные и искусственные (привести примеры). Радиоактивность. Закон радиоактивного распада (графический и аналитический виды).
- 31. Источники радиоактивного загрязнения окружающей среды и защита от вредного воздействия. Привести примеры, указать численные значения среднегодовых эквивалентных доз, получаемых от этих источников. Радон. Физиологическое действие радона, пути проникновения радона в дома, меры предупреждения накопления радона в доме.
- 32. Взаимодействие рентгеновского и γ-излучений с веществом. Характеристики фотоэффекта, Комптоновского рассеяния и рождения пар. Коэффициент ослабления рентгеновского и γ-излучений, зависимость от энергии излучения.
- 33. Дозиметрия. Поглощённая, экспозиционная и эквивалентная дозы ионизирующего излучения. Системные и внесистемные единицы измерения указанных доз. Пропорциональная зависимость между дозами, переходный коэффициент.. Коэффициент качества для α-, β-, μ-, рентгеновского и γ-излучений.
- 34. Определение мощности дозы. Системные и внесистемные единицы измерения мощности доз. Измерение активности радиоактивных изотопов: дать определение изотопов, активности. Системные и внесистемные единицы измерения активности.
- 35. Виды детекторов ионизирующих излучений. Сцинтилляционные детекторы и счётчики Гейгера. Особенности, принцип работы детекторов, технические принципы их работы.

2.3. Комплект ситуационных задач для практических занятий

по дисциплине

№	Ситуационная задача	Код компетенции, на формирование которой направлено задание
1.	Определить скорость истечения жидкости из малого отверстия в открытом сосуде. Высота столба жидкости в сосуде составляет 20 см; отверстие, из которого вытекает жидкость, находится на высоте 3 см от дна сосуда. (Скорость опускания уровня жидкости в сосуде взять равной нулю, вязкостью пренебречь).	ОПК-1
2.	На какой высоте от дна находится малое отверстие, из которого вытекает со скоростью 2 м/с вода, находящаяся в открытом сосуде, если высота столба воды 35 см. (Скорость опускания уровня воды в сосуде взять равной нулю, вязкостью пренебречь).	ОПК-1
3.	Найти гидравлическое сопротивление в системе, состоящей из трех жестких цилиндрических трубок, если длина первой - 4 мм, второй - 1мм, третьей - 5 мм. Радиусы трубок равны, соответственно, 0,3 мм, 0,5 мм, 0,1 мм. Течение крови считать ламинарным (см. рис. 1). Дополнительные данные взять из справочных материалов задачника.	ОПК-1
4.	Определить скорость движения стенки артерии, если частота падающей ультразвуковой волны была равна 1 мегаГерц, а сдвиг частоты в отраженной волне, за счет Доплер эффекта, составил 3 Гц. (Скорость распространения ультразвука взять равной 1500 м/с).	ОПК-1
5.	Определить доплеровский сдвиг частоты в отраженной, от поверхности левого желудочка сердца, ультразвуковой волне, если частота падающей волны равна 0,8 мегаГерц, а скорость его распространения 1500 м/с. (Скорость движения поверхности, на которую падает волна, взять равной 1,5 мм/с и направленной противоположно распространению волны)	ОПК-1
6.	Скорость движения клапана сердца составляет 1,3 мм/с. Чему равна частота ультразвуковой волны, распространяющейся со скоростью 1520 м/с, если сдвиг частоты, за счет Доплер — эффекта, при отражении волны от стенки клапана, составил 5 Гц?	ОПК-1

7.	Чему равно напряжение сдвига в токе крови, если скорость деформации сдвига равна 500 с ⁻¹ ? Можно ли считать, что уравнение Кессона, в данном случае, корректно аппроксимируется уравнением Ньютона? (Предел текучести считать равным 0,003 H/м ²).	ОПК-1	
8.	Скорость деформации сдвига (градиент скорости) крови равна 20 с ⁻¹ . Можно ли кровь, в этих условиях, считать ньютоновской жидкостью? (Предел текучести считать равным 0,003 H/м ²).	ОПК-1	
9.	Определить, при каком давлении средняя длина свободного пробега молекул азота равна 5 см, если температура равна 75° С (размер молекулы взять равным 3,1·10 ⁻¹⁰ м).		
10.	Найти динамический и кинематический коэффициенты вязкости и коэффициент диффузии молекул кислорода при температуре 27° С и давлении $2 \cdot 10^{5}$ Па. (Газ считать идеальным).	ОПК-1	
11.	Чему равна абсолютная влажность воздуха при температуре 50° С и парциальном давлении пара в нем 20 кПа.	ОПК-1	
12.	Определить абсолютную влажность воздуха при температуре 30° С и парциальном давлении пара в нем 15 кПа.	ОПК-1	
13.	Найти абсолютную влажность воздуха, если его относительная влажность при температуре 27° С равна 92%.	ОПК-1	
14.	Относительная влажность воздуха в замкнутом объеме 2м ³ , равна 80% при температуре 27° С. Чему равна масса воды, которая должна испариться в этот объем, чтобы водяной пар стал насыщенным?	ОПК-1	
15.	В микроскопе фокусное расстояние объектива равно 4 мм, а окуляра20 мм. Каково будет увеличение микроскопа, если оптическая длина тубуса 17 см.	ОПК-1	
16.	Линейное увеличение микроскопа составило 500. Определить оптическую длину тубуса, если фокусное расстояние объектива равно 6 мм, а окуляра - 18 мм.	ОПК-1	
17.	Начертить оптическую систему микроскопа, включающую в себя объектив и окуляр. Показать на чертеже: главную оптическую ось, главные фокусы, оптические центры и фокальные плоскости для объектива и окуляра, а также оптическую длину тубуса.	ОПК-1	
18.	Начертить оптическую систему микроскопа, включающую в себя объектив и окуляр. Показать на чертеже: главную оптическую ось, главные фокусы объектива и окуляра. Построить изображение стрелки, находящейся на расстоянии l от объектива (см. рис.2), если: а) $l = 2 f_{ob}$, б) $f_{ob} < l < 2 f_{ob}$, в) $l < f_{ob}$, где f_{ob} - фокусное расстояние объектива; перечислить свойства полученного изображения. Считать объектив и окуляр тонкими линзами.	ОПК-1	

	Рис. 2	
19.	Механический маятник совершает колебания по закону $X = 0.2 \sin \pi (t+0.5)$ м. Определить амплитуду, период, начальную фазу колебаний и ускорение в момент времени $t = 0.5$ с.	ОПК-1
20.	Определить амплитуду, период, начальную фазу колебаний и ускорение математического маятника в момент времени $t = 0.5$ с, если груз совершает колебания по закону $X = 0.3 \text{Cos } \pi(t+0.5)$ м.	ОПК-1
21.	В физиологическом эксперименте, проводимом на лягушках, использовали тетанизирующий ток (импульсы треугольной формы). Длительность импульсов $\tau_{\rm u}$ составляет 1 мс, а частота следования 80 Гц. Чему равны скважность следования импульсов Q, период T их повторения и длительность паузы? Нарисовать форму сигналов.	ОПК-1
22.	Период полураспада радиоактивного изотопа урана составляет $3,1\times10^8$ лет. Определить постоянную распада λ этого изотопа урана.	ОПК-1
23.	Период полураспада радиоактивного изотопа натрия равен 15,06 часа. Найти активность A этого изотопа через 1 день и через 1000 дней после изготовления этого препарата, если начальная его активность $A_o = 100$ мКи. Ответ дать в единицах системы СИ.	ОПК-1
24.	Чему равен период полураспада одного из изотопов радона, если за 1 сутки из 2 миллионов атомов распадается 200 000 атомов?	ОПК-1

3. ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

3.1. Критерии и шкалы оценивания выполнения тестовых заданий

- · - · - · · · · · · · · · · · · · · ·			
Код	Качественная оценка уровня подготовки		Процент
компетенции	петенции Балл Оценка		правильных ответов
ОПК-1	5	Отлично	90-100%
	4	Хорошо	80-89%
3 Удовлетворительно		70-79%	
	2	Неудовлетворительно	Менее 70%

3.2. Критерии и шкала оценивания знаний обучающихся

Код	Оценка 5	Оценка 4	Оценка 3	Оценка 2
компе-	«отлично»	«хорошо»	«удовлетвори-	«неудовлетворит
тенции	(O15141-1110//	«хорошо»	тельно»	ельно»
			TOSIBITO//	
ОПК-1	Глубокое	Твердые знания	Знание	Незнание
	усвоение	программного	основного	значительной
	программного	материала,	материала,	части
	материала,	допустимы	допустимы	программного
	логически	несущественные	неточности в	материала,
	стройное его	неточности в ответе	ответе на	неумение даже с
	изложение,	на вопрос,	вопросы,	помощью
	дискуссионность	правильное	нарушение	преподавателя
	данной	применение	логической	сформулировать
	проблематики,	теоретических	последовательно	правильные
	умение связать	положений при	сти в изложении	ответы на
	теорию с	решении вопросов и	программного	задаваемые
	возможностями ее	задач, умение	материала,	вопросы,
	применения на	выбирать	умение решать	невыполнение
	практике,	конкретные методы	простые задачи	практических
	свободное	решения сложных	на основе	заданий
	решение задач и	задач, используя	базовых знаний	
	обоснование	методы сбора,	и заданных	
	принятого	расчета, анализа,	алгоритмов	
	решения,	классификации,	действий,	
	владение	интерпретации	испытывать	
	методологией и	данных,	затруднения при	
	методиками	самостоятельно	решении	
	исследований,	применяя	практических	
	методами	математический и	задач	
	моделирования	статистический		
		аппарат		

3.3. Критерии и шкала оценивания знаний обучающихся при проведении промежуточной аттестации в форме зачета

«ЗАЧТЕНО» — обучающийся дает ответы на вопросы, свидетельствующие о знании и понимании основного программного материала; раскрывает вопросы Программы по дисциплине верно, проявляет способность грамотно использовать данные обязательной литературы для формулировки выводов и рекомендаций; показывает действенные умения и навыки; излагает материал логично и последовательно; обучающийся показывает прилежность в обучении.

«НЕ ЗАЧТЕНО» - обучающийся дает ответы на вопросы, свидетельствующие о значительных пробелах в знаниях программного материала по дисциплине; допускает грубые ошибки при выполнении заданий или невыполнение заданий; показывает полное незнание одного из вопросов билета, дает ответ без выводов и обобщений; в процессе обучения отмечаются пропуски лекций и занятий без уважительных причин, неудовлетворительные оценки по текущей успеваемости.